• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x20(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x20(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33   const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34 
35   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40 
41   const float32x4_t vi_max = vdupq_n_f32(max);
42 
43   float32x4_t vacc0 = vmovq_n_f32(0.0f);
44   for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
45     // Load 20 (5x4) inputs at a time.
46     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
49     const float32x4_t viCDEF = vld1q_f32(input); input += 4;
50     const float32x4_t viGHIJ = vld1q_f32(input); input += 4;
51 
52     // Subtract maximum input x := i - i_max. This implies x <= 0.
53     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
54     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
55     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
56     const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
57     const float32x4_t vxGHIJ = vsubq_f32(viGHIJ, vi_max);
58 
59     // Compute reduced argument n := round(x / log(2)).
60     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
61     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
62     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
63     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
64     // of the algorithm.
65     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
66     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
67     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
68     float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e);
69     float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vxGHIJ, vlog2e);
70 
71     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
72     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
73     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
74     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
75     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
76     const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
77     const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23));
78 
79     // Subtract the large number back to get final n := round(x / log(2)).
80     vn0123 = vsubq_f32(vn0123, vmagic_bias);
81     vn4567 = vsubq_f32(vn4567, vmagic_bias);
82     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
83     vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
84     vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
85 
86     // Compute reduced argument t := z - n * log(2).
87     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
88     float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
89     float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
90     float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
91     float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
92     float32x4_t vtGHIJ = vmlaq_f32(vxGHIJ, vnGHIJ, vminus_ln2_hi);
93 
94     vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
95     vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
96     vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
97     vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
98     vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vminus_ln2_lo);
99 
100     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
101     float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
102     float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
103     float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
104     float32x4_t vpCDEF = vmlaq_f32(vc4, vc5, vtCDEF);
105     float32x4_t vpGHIJ = vmlaq_f32(vc4, vc5, vtGHIJ);
106 
107     vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
108     vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
109     vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
110     vpCDEF = vmlaq_f32(vc3, vpCDEF, vtCDEF);
111     vpGHIJ = vmlaq_f32(vc3, vpGHIJ, vtGHIJ);
112 
113     vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
114     vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
115     vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
116     vpCDEF = vmlaq_f32(vc2, vpCDEF, vtCDEF);
117     vpGHIJ = vmlaq_f32(vc2, vpGHIJ, vtGHIJ);
118 
119     vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
120     vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
121     vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
122     vpCDEF = vmlaq_f32(vc1, vpCDEF, vtCDEF);
123     vpGHIJ = vmlaq_f32(vc1, vpGHIJ, vtGHIJ);
124 
125     // Reconstruct the final f value:
126     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
127     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
128     //     = s + (t * s) * p
129     vt0123 = vmulq_f32(vt0123, vs0123);
130     vt4567 = vmulq_f32(vt4567, vs4567);
131     vt89AB = vmulq_f32(vt89AB, vs89AB);
132     vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
133     vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ);
134 
135     float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
136     float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
137     float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
138     float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vpCDEF, vtCDEF);
139     float32x4_t vfGHIJ = vmlaq_f32(vsGHIJ, vpGHIJ, vtGHIJ);
140 
141     // For inputs below denormal cutoff, replace output with +0.0f.
142     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
143     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
144     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
145     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
146     vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
147     vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcltq_f32(vxGHIJ, vdenorm_cutoff)));
148 
149     // Store 20 (5x4) outputs at a time.
150     vst1q_f32(output, vf0123); output += 4;
151     vst1q_f32(output, vf4567); output += 4;
152     vst1q_f32(output, vf89AB); output += 4;
153     vst1q_f32(output, vfCDEF); output += 4;
154     vst1q_f32(output, vfGHIJ); output += 4;
155 
156     // Accumulate computed exponents.
157     vacc0 = vaddq_f32(vacc0, vf0123);
158     vacc0 = vaddq_f32(vacc0, vf4567);
159     vacc0 = vaddq_f32(vacc0, vf89AB);
160     vacc0 = vaddq_f32(vacc0, vfCDEF);
161     vacc0 = vaddq_f32(vacc0, vfGHIJ);
162   }
163 
164   float32x4_t vacc = vacc0;
165   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
166     // Load 4 inputs at a time.
167     const float32x4_t vi = vld1q_f32(input); input += 4;
168 
169     // Subtract maximum input x := i - i_max. This implies x <= 0.
170     const float32x4_t vx = vsubq_f32(vi, vi_max);
171 
172     // Compute reduced argument n := round(x / log(2)).
173     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
174     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
175     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
176     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
177     // of the algorithm.
178     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
179 
180     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
181     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
182     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
183 
184     // Subtract the large number back to get final n := round(x / log(2)).
185     vn = vsubq_f32(vn, vmagic_bias);
186 
187     // Compute reduced argument t := z - n * log(2).
188     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
189     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
190     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
191 
192     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
193     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
194     vp = vmlaq_f32(vc3, vp, vt);
195     vp = vmlaq_f32(vc2, vp, vt);
196     vp = vmlaq_f32(vc1, vp, vt);
197 
198     // Reconstruct the final f value:
199     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
200     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
201     //     = s + (t * s) * p
202     vt = vmulq_f32(vt, vs);
203     float32x4_t vf = vmlaq_f32(vs, vp, vt);
204 
205     // For inputs below denormal cutoff, replace output with +0.0f.
206     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
207     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
208 
209     // Store 4 outputs at a time.
210     vst1q_f32(output, vf); output += 4;
211 
212     // Accumulate computed exponents.
213     vacc = vaddq_f32(vacc, vf);
214   }
215 #if XNN_ARCH_ARM64
216   float vacc_lo = vaddvq_f32(vacc);
217 #else
218   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
219 #endif
220   if (elements != 0) {
221     assert(elements >= 1 * sizeof(float));
222     assert(elements <= 3 * sizeof(float));
223     // Load 4 inputs at a time.
224     const float32x4_t vi = vld1q_f32(input); input += 4;
225 
226     // Subtract maximum input x := i - i_max. This implies x <= 0.
227     const float32x4_t vx = vsubq_f32(vi, vi_max);
228 
229     // Compute reduced argument n := round(x / log(2)).
230     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
231     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
232     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
233     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
234     // of the algorithm.
235     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
236 
237     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
238     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
239     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
240 
241     // Subtract the large number back to get final n := round(x / log(2)).
242     vn = vsubq_f32(vn, vmagic_bias);
243 
244     // Compute reduced argument t := z - n * log(2).
245     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
246     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
247     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
248 
249     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
250     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
251     vp = vmlaq_f32(vc3, vp, vt);
252     vp = vmlaq_f32(vc2, vp, vt);
253     vp = vmlaq_f32(vc1, vp, vt);
254 
255     // Reconstruct the final f value:
256     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
257     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
258     //     = s + (t * s) * p
259     vt = vmulq_f32(vt, vs);
260     float32x4_t vf = vmlaq_f32(vs, vp, vt);
261 
262     // For inputs below denormal cutoff, replace output with +0.0f.
263     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
264     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
265 
266     float32x2_t vf_lo = vget_low_f32(vf);
267     if (elements & (2 * sizeof(float))) {
268       // Store 2 outputs at a time.
269       vst1_f32(output, vf_lo); output += 2;
270 
271       // Accumulate 2 computed exponents.
272       #if XNN_ARCH_ARM64
273         vacc_lo += vaddv_f32(vf_lo);
274       #else
275         vacc_lo = vadd_f32(vacc_lo, vf_lo);
276       #endif
277 
278       vf_lo = vget_high_f32(vf);
279     }
280     if (elements & (1 * sizeof(float))) {
281       // Store 1 output at a time.
282       vst1_lane_f32(output, vf_lo, 0);
283 
284       // Accumulate 1 computed exponent.
285       #if XNN_ARCH_ARM64
286         vacc_lo += vget_lane_f32(vf_lo, 0);
287       #else
288         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
289       #endif
290     }
291   }
292   // Reduce 4 elements in the SIMD register
293 #if XNN_ARCH_ARM64
294   *sum = vacc_lo;
295 #else
296   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
297 #endif
298 }
299