• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/sse2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x20(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x20(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
30   const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33   const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34 
35   const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
36   const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
37   const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
38   const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
39   const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
40 
41   const __m128 vi_max = _mm_set1_ps(max);
42 
43   __m128 vacc0 = _mm_setzero_ps();
44   for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
45     // Load 20 (5x4) inputs at a time.
46     const __m128 vi0123 = _mm_loadu_ps(input);
47     const __m128 vi4567 = _mm_loadu_ps(input + 4);
48     const __m128 vi89AB = _mm_loadu_ps(input + 8);
49     const __m128 viCDEF = _mm_loadu_ps(input + 12);
50     const __m128 viGHIJ = _mm_loadu_ps(input + 16);
51     input += 20;
52 
53     // Subtract maximum input x := i - i_max. This implies x <= 0.
54     const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
55     const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
56     const __m128 vx89AB = _mm_sub_ps(vi89AB, vi_max);
57     const __m128 vxCDEF = _mm_sub_ps(viCDEF, vi_max);
58     const __m128 vxGHIJ = _mm_sub_ps(viGHIJ, vi_max);
59 
60     // Compute reduced argument elements := round(x / log(2)).
61     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
62     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
63     __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vx89AB, vlog2e), vmagic_bias);
64     __m128 vnCDEF = _mm_add_ps(_mm_mul_ps(vxCDEF, vlog2e), vmagic_bias);
65     __m128 vnGHIJ = _mm_add_ps(_mm_mul_ps(vxGHIJ, vlog2e), vmagic_bias);
66 
67     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
68     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
69     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
70     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
71     const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
72     const __m128 vsCDEF = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnCDEF), 23));
73     const __m128 vsGHIJ = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnGHIJ), 23));
74 
75     // Subtract the large number back to get final elements := round(x / log(2)).
76     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
77     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
78     vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
79     vnCDEF = _mm_sub_ps(vnCDEF, vmagic_bias);
80     vnGHIJ = _mm_sub_ps(vnGHIJ, vmagic_bias);
81 
82     // Compute reduced argument t := x - elements * log(2).
83     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
84     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
85     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
86     __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vx89AB);
87     __m128 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_hi), vxCDEF);
88     __m128 vtGHIJ = _mm_add_ps(_mm_mul_ps(vnGHIJ, vminus_ln2_hi), vxGHIJ);
89 
90     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
91     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
92     vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
93     vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_lo), vtCDEF);
94     vtGHIJ = _mm_add_ps(_mm_mul_ps(vnGHIJ, vminus_ln2_lo), vtGHIJ);
95 
96     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
97     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
98     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
99     __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
100     __m128 vpCDEF = _mm_add_ps(_mm_mul_ps(vc5, vtCDEF), vc4);
101     __m128 vpGHIJ = _mm_add_ps(_mm_mul_ps(vc5, vtGHIJ), vc4);
102 
103     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
104     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
105     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
106     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc3);
107     vpGHIJ = _mm_add_ps(_mm_mul_ps(vpGHIJ, vtGHIJ), vc3);
108 
109     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
110     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
111     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
112     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc2);
113     vpGHIJ = _mm_add_ps(_mm_mul_ps(vpGHIJ, vtGHIJ), vc2);
114 
115     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
116     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
117     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
118     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc1);
119     vpGHIJ = _mm_add_ps(_mm_mul_ps(vpGHIJ, vtGHIJ), vc1);
120 
121     // Reconstruct the final f value:
122     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
123     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
124     //     = s + (t * s) * p
125     vt0123 = _mm_mul_ps(vt0123, vs0123);
126     vt4567 = _mm_mul_ps(vt4567, vs4567);
127     vt89AB = _mm_mul_ps(vt89AB, vs89AB);
128     vtCDEF = _mm_mul_ps(vtCDEF, vsCDEF);
129     vtGHIJ = _mm_mul_ps(vtGHIJ, vsGHIJ);
130 
131     __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
132     __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
133     __m128 vf89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
134     __m128 vfCDEF = _mm_add_ps(_mm_mul_ps(vtCDEF, vpCDEF), vsCDEF);
135     __m128 vfGHIJ = _mm_add_ps(_mm_mul_ps(vtGHIJ, vpGHIJ), vsGHIJ);
136 
137     // For inputs below zero cutoff, replace output with +0.0f.
138     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
139     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
140     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
141     vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vx89AB, vdenorm_cutoff), vf89AB);
142     vfCDEF = _mm_andnot_ps(_mm_cmplt_ps(vxCDEF, vdenorm_cutoff), vfCDEF);
143     vfGHIJ = _mm_andnot_ps(_mm_cmplt_ps(vxGHIJ, vdenorm_cutoff), vfGHIJ);
144 
145     // Store 20 (5x4) outputs at a time.
146     _mm_storeu_ps(output, vf0123);
147     _mm_storeu_ps(output + 4, vf4567);
148     _mm_storeu_ps(output + 8, vf89AB);
149     _mm_storeu_ps(output + 12, vfCDEF);
150     _mm_storeu_ps(output + 16, vfGHIJ);
151     output += 20;
152 
153     // Accumulate computed exponents.
154     vacc0 = _mm_add_ps(vacc0, vf0123);
155     vacc0 = _mm_add_ps(vacc0, vf4567);
156     vacc0 = _mm_add_ps(vacc0, vf89AB);
157     vacc0 = _mm_add_ps(vacc0, vfCDEF);
158     vacc0 = _mm_add_ps(vacc0, vfGHIJ);
159   }
160 
161   __m128 vacc = vacc0;
162   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
163     // Load 4 inputs at a time.
164     const __m128 vi = _mm_loadu_ps(input);
165     input += 4;
166 
167     // Subtract maximum input x := i - i_max. This implies x <= 0.
168     const __m128 vx = _mm_sub_ps(vi, vi_max);
169 
170     // Compute reduced argument elements := round(x / log(2)).
171     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
172 
173     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
174     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
175     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
176 
177     // Subtract the large number back to get final elements := round(x / log(2)).
178     vn = _mm_sub_ps(vn, vmagic_bias);
179 
180     // Compute reduced argument t := x - elements * log(2).
181     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
182     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
183     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
184 
185     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
186     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
187     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
188     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
189     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
190 
191     // Reconstruct the final f value:
192     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
193     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
194     //     = s + (t * s) * p
195     vt = _mm_mul_ps(vt, vs);
196     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
197 
198     // For inputs below zero cutoff, replace output with +0.0f.
199     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
200     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
201 
202     // Store 4 outputs at a time.
203     _mm_storeu_ps(output, vf);
204     output += 4;
205 
206     // Accumulate computed exponents.
207     vacc = _mm_add_ps(vacc, vf);
208   }
209   if (elements != 0) {
210     assert(elements >= 1 * sizeof(float));
211     assert(elements <= 3 * sizeof(float));
212     // Load 4 inputs at a time.
213     const __m128 vi = _mm_loadu_ps(input);
214 
215     // Subtract maximum input x := i - i_max. This implies x <= 0.
216     const __m128 vx = _mm_sub_ps(vi, vi_max);
217 
218     // Compute reduced argument elements := round(x / log(2)).
219     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
220 
221     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
222     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
223     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
224 
225     // Subtract the large number back to get final elements := round(x / log(2)).
226     vn = _mm_sub_ps(vn, vmagic_bias);
227 
228     // Compute reduced argument t := x - elements * log(2).
229     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
230     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
231     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
232 
233     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
234     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
235     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
236     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
237     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
238 
239     // Reconstruct the final f value:
240     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
241     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
242     //     = s + (t * s) * p
243     vt = _mm_mul_ps(vt, vs);
244     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
245 
246     // For inputs below zero cutoff, replace output with +0.0f.
247     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
248     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
249 
250     if (elements & (2 * sizeof(float))) {
251       // Store 2 outputs at a time.
252       _mm_storel_pi((__m64*) output, vf);
253       output += 2;
254 
255       // Accumulate 2 computed exponents.
256       vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
257 
258       vf = _mm_movehl_ps(vf, vf);
259     }
260     if (elements & (1 * sizeof(float))) {
261       // Store 1 output at a time.
262       _mm_store_ss(output, vf);
263 
264       // Accumulate 1 computed exponent.
265       vacc = _mm_add_ss(vacc, vf);
266     }
267   }
268   // Reduce 4 elements in the SIMD register
269   vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
270   vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
271   _mm_store_ss(sum, vacc);
272 }
273