• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/sse2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x8_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x8_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
30   const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33   const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34 
35   const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
36   const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
37   const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
38   const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
39   const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
40 
41   const __m128 vi_max = _mm_set1_ps(max);
42 
43   __m128 vacc0 = _mm_setzero_ps();
44   __m128 vacc1 = _mm_setzero_ps();
45   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
46     // Load 8 (2x4) inputs at a time.
47     const __m128 vi0123 = _mm_loadu_ps(input);
48     const __m128 vi4567 = _mm_loadu_ps(input + 4);
49     input += 8;
50 
51     // Subtract maximum input x := i - i_max. This implies x <= 0.
52     const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
53     const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
54 
55     // Compute reduced argument elements := round(x / log(2)).
56     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
57     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
58 
59     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
60     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
61     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
62     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
63 
64     // Subtract the large number back to get final elements := round(x / log(2)).
65     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
66     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
67 
68     // Compute reduced argument t := x - elements * log(2).
69     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
70     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
71     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
72 
73     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
74     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
75 
76     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
77     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
78     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
79 
80     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
81     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
82 
83     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
84     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
85 
86     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
87     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
88 
89     // Reconstruct the final f value:
90     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
91     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
92     //     = s + (t * s) * p
93     vt0123 = _mm_mul_ps(vt0123, vs0123);
94     vt4567 = _mm_mul_ps(vt4567, vs4567);
95 
96     __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
97     __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
98 
99     // For inputs below zero cutoff, replace output with +0.0f.
100     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
101     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
102     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
103 
104     // Store 8 (2x4) outputs at a time.
105     _mm_storeu_ps(output, vf0123);
106     _mm_storeu_ps(output + 4, vf4567);
107     output += 8;
108 
109     // Accumulate computed exponents.
110     vacc0 = _mm_add_ps(vacc0, vf0123);
111     vacc0 = _mm_add_ps(vacc0, vf4567);
112   }
113   // Add up all accumulators to vacc0
114   vacc0 = _mm_add_ps(vacc0, vacc1);
115 
116   __m128 vacc = vacc0;
117   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
118     // Load 4 inputs at a time.
119     const __m128 vi = _mm_loadu_ps(input);
120     input += 4;
121 
122     // Subtract maximum input x := i - i_max. This implies x <= 0.
123     const __m128 vx = _mm_sub_ps(vi, vi_max);
124 
125     // Compute reduced argument elements := round(x / log(2)).
126     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
127 
128     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
129     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
130     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
131 
132     // Subtract the large number back to get final elements := round(x / log(2)).
133     vn = _mm_sub_ps(vn, vmagic_bias);
134 
135     // Compute reduced argument t := x - elements * log(2).
136     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
137     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
138     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
139 
140     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
141     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
142     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
143     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
144     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
145 
146     // Reconstruct the final f value:
147     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
148     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
149     //     = s + (t * s) * p
150     vt = _mm_mul_ps(vt, vs);
151     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
152 
153     // For inputs below zero cutoff, replace output with +0.0f.
154     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
155     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
156 
157     // Store 4 outputs at a time.
158     _mm_storeu_ps(output, vf);
159     output += 4;
160 
161     // Accumulate computed exponents.
162     vacc = _mm_add_ps(vacc, vf);
163   }
164   if (elements != 0) {
165     assert(elements >= 1 * sizeof(float));
166     assert(elements <= 3 * sizeof(float));
167     // Load 4 inputs at a time.
168     const __m128 vi = _mm_loadu_ps(input);
169 
170     // Subtract maximum input x := i - i_max. This implies x <= 0.
171     const __m128 vx = _mm_sub_ps(vi, vi_max);
172 
173     // Compute reduced argument elements := round(x / log(2)).
174     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
175 
176     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
177     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
178     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
179 
180     // Subtract the large number back to get final elements := round(x / log(2)).
181     vn = _mm_sub_ps(vn, vmagic_bias);
182 
183     // Compute reduced argument t := x - elements * log(2).
184     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
185     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
186     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
187 
188     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
189     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
190     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
191     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
192     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
193 
194     // Reconstruct the final f value:
195     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
196     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
197     //     = s + (t * s) * p
198     vt = _mm_mul_ps(vt, vs);
199     __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
200 
201     // For inputs below zero cutoff, replace output with +0.0f.
202     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
203     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
204 
205     if (elements & (2 * sizeof(float))) {
206       // Store 2 outputs at a time.
207       _mm_storel_pi((__m64*) output, vf);
208       output += 2;
209 
210       // Accumulate 2 computed exponents.
211       vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
212 
213       vf = _mm_movehl_ps(vf, vf);
214     }
215     if (elements & (1 * sizeof(float))) {
216       // Store 1 output at a time.
217       _mm_store_ss(output, vf);
218 
219       // Accumulate 1 computed exponent.
220       vacc = _mm_add_ss(vacc, vf);
221     }
222   }
223   // Reduce 4 elements in the SIMD register
224   vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
225   vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
226   _mm_store_ss(sum, vacc);
227 }
228