1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/sse2-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <emmintrin.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x8_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x8_acc2(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
30 const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33 const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34
35 const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
36 const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
37 const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
38 const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
39 const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
40
41 const __m128 vi_max = _mm_set1_ps(max);
42
43 __m128 vacc0 = _mm_setzero_ps();
44 __m128 vacc1 = _mm_setzero_ps();
45 for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
46 // Load 8 (2x4) inputs at a time.
47 const __m128 vi0123 = _mm_loadu_ps(input);
48 const __m128 vi4567 = _mm_loadu_ps(input + 4);
49 input += 8;
50
51 // Subtract maximum input x := i - i_max. This implies x <= 0.
52 const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
53 const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
54
55 // Compute reduced argument elements := round(x / log(2)).
56 __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
57 __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
58
59 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
60 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
61 const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
62 const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
63
64 // Subtract the large number back to get final elements := round(x / log(2)).
65 vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
66 vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
67
68 // Compute reduced argument t := x - elements * log(2).
69 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
70 __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
71 __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
72
73 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
74 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
75
76 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
77 __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
78 __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
79
80 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
81 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
82
83 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
84 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
85
86 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
87 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
88
89 // Reconstruct the final f value:
90 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
91 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
92 // = s + (t * s) * p
93 vt0123 = _mm_mul_ps(vt0123, vs0123);
94 vt4567 = _mm_mul_ps(vt4567, vs4567);
95
96 __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
97 __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
98
99 // For inputs below zero cutoff, replace output with +0.0f.
100 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
101 vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
102 vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
103
104 // Store 8 (2x4) outputs at a time.
105 _mm_storeu_ps(output, vf0123);
106 _mm_storeu_ps(output + 4, vf4567);
107 output += 8;
108
109 // Accumulate computed exponents.
110 vacc0 = _mm_add_ps(vacc0, vf0123);
111 vacc0 = _mm_add_ps(vacc0, vf4567);
112 }
113 // Add up all accumulators to vacc0
114 vacc0 = _mm_add_ps(vacc0, vacc1);
115
116 __m128 vacc = vacc0;
117 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
118 // Load 4 inputs at a time.
119 const __m128 vi = _mm_loadu_ps(input);
120 input += 4;
121
122 // Subtract maximum input x := i - i_max. This implies x <= 0.
123 const __m128 vx = _mm_sub_ps(vi, vi_max);
124
125 // Compute reduced argument elements := round(x / log(2)).
126 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
127
128 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
129 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
130 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
131
132 // Subtract the large number back to get final elements := round(x / log(2)).
133 vn = _mm_sub_ps(vn, vmagic_bias);
134
135 // Compute reduced argument t := x - elements * log(2).
136 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
137 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
138 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
139
140 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
141 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
142 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
143 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
144 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
145
146 // Reconstruct the final f value:
147 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
148 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
149 // = s + (t * s) * p
150 vt = _mm_mul_ps(vt, vs);
151 __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
152
153 // For inputs below zero cutoff, replace output with +0.0f.
154 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
155 vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
156
157 // Store 4 outputs at a time.
158 _mm_storeu_ps(output, vf);
159 output += 4;
160
161 // Accumulate computed exponents.
162 vacc = _mm_add_ps(vacc, vf);
163 }
164 if (elements != 0) {
165 assert(elements >= 1 * sizeof(float));
166 assert(elements <= 3 * sizeof(float));
167 // Load 4 inputs at a time.
168 const __m128 vi = _mm_loadu_ps(input);
169
170 // Subtract maximum input x := i - i_max. This implies x <= 0.
171 const __m128 vx = _mm_sub_ps(vi, vi_max);
172
173 // Compute reduced argument elements := round(x / log(2)).
174 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
175
176 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
177 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
178 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
179
180 // Subtract the large number back to get final elements := round(x / log(2)).
181 vn = _mm_sub_ps(vn, vmagic_bias);
182
183 // Compute reduced argument t := x - elements * log(2).
184 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
185 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
186 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
187
188 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
189 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
190 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
191 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
192 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
193
194 // Reconstruct the final f value:
195 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
196 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
197 // = s + (t * s) * p
198 vt = _mm_mul_ps(vt, vs);
199 __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
200
201 // For inputs below zero cutoff, replace output with +0.0f.
202 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
203 vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
204
205 if (elements & (2 * sizeof(float))) {
206 // Store 2 outputs at a time.
207 _mm_storel_pi((__m64*) output, vf);
208 output += 2;
209
210 // Accumulate 2 computed exponents.
211 vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
212
213 vf = _mm_movehl_ps(vf, vf);
214 }
215 if (elements & (1 * sizeof(float))) {
216 // Store 1 output at a time.
217 _mm_store_ss(output, vf);
218
219 // Accumulate 1 computed exponent.
220 vacc = _mm_add_ss(vacc, vf);
221 }
222 }
223 // Reduce 4 elements in the SIMD register
224 vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
225 vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
226 _mm_store_ss(sum, vacc);
227 }
228