• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <wasm_simd128.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x12(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x12(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30   const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33   const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34 
35   const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36   const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37   const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38   const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39   const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40 
41   const v128_t vi_max = wasm_f32x4_splat(max);
42 
43   v128_t vacc0 = wasm_f32x4_splat(0.0f);
44   for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
45     // Load 12 (3x4) inputs at a time.
46     const v128_t vi0123 = wasm_v128_load(input);
47     const v128_t vi4567 = wasm_v128_load(input + 4);
48     const v128_t vi89AB = wasm_v128_load(input + 8);
49     input += 12;
50 
51     // Subtract maximum input x := i - i_max. This implies x <= 0.
52     const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
53     const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
54     const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
55 
56     // Compute reduced argument elements := round(x / log(2)).
57     v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
58     v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
59     v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
60 
61     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
62     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
63     const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
64     const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
65     const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
66 
67     // Subtract the large number back to get final elements := round(x / log(2)).
68     vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
69     vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
70     vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
71 
72     // Compute reduced argument t := x - elements * log(2).
73     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
74     v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
75     v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
76     v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
77 
78     vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
79     vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
80     vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
81 
82     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
83     v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
84     v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
85     v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
86 
87     vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
88     vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
89     vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
90 
91     vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
92     vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
93     vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
94 
95     vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
96     vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
97     vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
98 
99     // Reconstruct the final f value:
100     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
101     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
102     //     = s + (t * s) * p
103     vt0123 = wasm_f32x4_mul(vt0123, vs0123);
104     vt4567 = wasm_f32x4_mul(vt4567, vs4567);
105     vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
106 
107     v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
108     v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
109     v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
110 
111     // For inputs below zero cutoff, replace output with +0.0f.
112     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
113     vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
114     vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
115     vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
116 
117     // Store 12 (3x4) outputs at a time.
118     wasm_v128_store(output, vf0123);
119     wasm_v128_store(output + 4, vf4567);
120     wasm_v128_store(output + 8, vf89AB);
121     output += 12;
122 
123     // Accumulate computed exponents.
124     vacc0 = wasm_f32x4_add(vacc0, vf0123);
125     vacc0 = wasm_f32x4_add(vacc0, vf4567);
126     vacc0 = wasm_f32x4_add(vacc0, vf89AB);
127   }
128 
129   v128_t vacc = vacc0;
130   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
131     // Load 4 inputs at a time.
132     const v128_t vi = wasm_v128_load(input);
133     input += 4;
134 
135     // Subtract maximum input x := i - i_max. This implies x <= 0.
136     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
137 
138     // Compute reduced argument elements := round(x / log(2)).
139     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
140 
141     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
142     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
143     const v128_t vs = wasm_i32x4_shl(vn, 23);
144 
145     // Subtract the large number back to get final elements := round(x / log(2)).
146     vn = wasm_f32x4_sub(vn, vmagic_bias);
147 
148     // Compute reduced argument t := x - elements * log(2).
149     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
150     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
151     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
152 
153     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
154     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
155     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
156     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
157     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
158 
159     // Reconstruct the final f value:
160     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
161     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
162     //     = s + (t * s) * p
163     vt = wasm_f32x4_mul(vt, vs);
164     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
165 
166     // For inputs below zero cutoff, replace output with +0.0f.
167     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
168     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
169 
170     // Store 4 outputs at a time.
171     wasm_v128_store(output, vf);
172     output += 4;
173 
174     // Accumulate computed exponents.
175     vacc = wasm_f32x4_add(vacc, vf);
176   }
177   vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
178   float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
179   if (elements != 0) {
180     assert(elements >= 1 * sizeof(float));
181     assert(elements <= 3 * sizeof(float));
182     // Load 4 inputs at a time.
183     const v128_t vi = wasm_v128_load(input);
184 
185     // Subtract maximum input x := i - i_max. This implies x <= 0.
186     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
187 
188     // Compute reduced argument elements := round(x / log(2)).
189     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
190 
191     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
192     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
193     const v128_t vs = wasm_i32x4_shl(vn, 23);
194 
195     // Subtract the large number back to get final elements := round(x / log(2)).
196     vn = wasm_f32x4_sub(vn, vmagic_bias);
197 
198     // Compute reduced argument t := x - elements * log(2).
199     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
200     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
201     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
202 
203     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
204     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
205     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
206     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
207     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
208 
209     // Reconstruct the final f value:
210     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
211     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
212     //     = s + (t * s) * p
213     vt = wasm_f32x4_mul(vt, vs);
214     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
215 
216     // For inputs below zero cutoff, replace output with +0.0f.
217     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
218     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
219 
220     if (elements & (2 * sizeof(float))) {
221       // Store and accumulate 2 outputs at a time.
222       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
223       output[0] = vf0;
224       vsum += vf0;
225 
226       const float vf1 = wasm_f32x4_extract_lane(vf, 1);
227       output[1] = vf1;
228       vsum += vf1;
229 
230       vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
231       output += 2;
232     }
233     if (elements & (1 * sizeof(float))) {
234       // Store 1 output at a time.
235       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
236       *output = vf0;
237       vsum += vf0;
238     }
239   }
240   // Reduce 4 elements in the SIMD register
241   *sum = vsum;
242 }
243