1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <wasm_simd128.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x12(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x12(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30 const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33 const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34
35 const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36 const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37 const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38 const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39 const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40
41 const v128_t vi_max = wasm_f32x4_splat(max);
42
43 v128_t vacc0 = wasm_f32x4_splat(0.0f);
44 for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
45 // Load 12 (3x4) inputs at a time.
46 const v128_t vi0123 = wasm_v128_load(input);
47 const v128_t vi4567 = wasm_v128_load(input + 4);
48 const v128_t vi89AB = wasm_v128_load(input + 8);
49 input += 12;
50
51 // Subtract maximum input x := i - i_max. This implies x <= 0.
52 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
53 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
54 const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
55
56 // Compute reduced argument elements := round(x / log(2)).
57 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
58 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
59 v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
60
61 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
62 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
63 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
64 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
65 const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
66
67 // Subtract the large number back to get final elements := round(x / log(2)).
68 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
69 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
70 vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
71
72 // Compute reduced argument t := x - elements * log(2).
73 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
74 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
75 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
76 v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
77
78 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
79 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
80 vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
81
82 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
83 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
84 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
85 v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
86
87 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
88 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
89 vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
90
91 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
92 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
93 vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
94
95 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
96 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
97 vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
98
99 // Reconstruct the final f value:
100 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
101 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
102 // = s + (t * s) * p
103 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
104 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
105 vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
106
107 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
108 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
109 v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
110
111 // For inputs below zero cutoff, replace output with +0.0f.
112 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
113 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
114 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
115 vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
116
117 // Store 12 (3x4) outputs at a time.
118 wasm_v128_store(output, vf0123);
119 wasm_v128_store(output + 4, vf4567);
120 wasm_v128_store(output + 8, vf89AB);
121 output += 12;
122
123 // Accumulate computed exponents.
124 vacc0 = wasm_f32x4_add(vacc0, vf0123);
125 vacc0 = wasm_f32x4_add(vacc0, vf4567);
126 vacc0 = wasm_f32x4_add(vacc0, vf89AB);
127 }
128
129 v128_t vacc = vacc0;
130 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
131 // Load 4 inputs at a time.
132 const v128_t vi = wasm_v128_load(input);
133 input += 4;
134
135 // Subtract maximum input x := i - i_max. This implies x <= 0.
136 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
137
138 // Compute reduced argument elements := round(x / log(2)).
139 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
140
141 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
142 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
143 const v128_t vs = wasm_i32x4_shl(vn, 23);
144
145 // Subtract the large number back to get final elements := round(x / log(2)).
146 vn = wasm_f32x4_sub(vn, vmagic_bias);
147
148 // Compute reduced argument t := x - elements * log(2).
149 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
150 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
151 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
152
153 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
154 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
155 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
156 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
157 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
158
159 // Reconstruct the final f value:
160 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
161 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
162 // = s + (t * s) * p
163 vt = wasm_f32x4_mul(vt, vs);
164 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
165
166 // For inputs below zero cutoff, replace output with +0.0f.
167 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
168 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
169
170 // Store 4 outputs at a time.
171 wasm_v128_store(output, vf);
172 output += 4;
173
174 // Accumulate computed exponents.
175 vacc = wasm_f32x4_add(vacc, vf);
176 }
177 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
178 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
179 if (elements != 0) {
180 assert(elements >= 1 * sizeof(float));
181 assert(elements <= 3 * sizeof(float));
182 // Load 4 inputs at a time.
183 const v128_t vi = wasm_v128_load(input);
184
185 // Subtract maximum input x := i - i_max. This implies x <= 0.
186 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
187
188 // Compute reduced argument elements := round(x / log(2)).
189 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
190
191 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
192 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
193 const v128_t vs = wasm_i32x4_shl(vn, 23);
194
195 // Subtract the large number back to get final elements := round(x / log(2)).
196 vn = wasm_f32x4_sub(vn, vmagic_bias);
197
198 // Compute reduced argument t := x - elements * log(2).
199 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
200 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
201 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
202
203 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
204 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
205 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
206 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
207 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
208
209 // Reconstruct the final f value:
210 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
211 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
212 // = s + (t * s) * p
213 vt = wasm_f32x4_mul(vt, vs);
214 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
215
216 // For inputs below zero cutoff, replace output with +0.0f.
217 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
218 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
219
220 if (elements & (2 * sizeof(float))) {
221 // Store and accumulate 2 outputs at a time.
222 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
223 output[0] = vf0;
224 vsum += vf0;
225
226 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
227 output[1] = vf1;
228 vsum += vf1;
229
230 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
231 output += 2;
232 }
233 if (elements & (1 * sizeof(float))) {
234 // Store 1 output at a time.
235 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
236 *output = vf0;
237 vsum += vf0;
238 }
239 }
240 // Reduce 4 elements in the SIMD register
241 *sum = vsum;
242 }
243