• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <wasm_simd128.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x20(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x20(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30   const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33   const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34 
35   const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36   const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37   const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38   const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39   const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40 
41   const v128_t vi_max = wasm_f32x4_splat(max);
42 
43   v128_t vacc0 = wasm_f32x4_splat(0.0f);
44   for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
45     // Load 20 (5x4) inputs at a time.
46     const v128_t vi0123 = wasm_v128_load(input);
47     const v128_t vi4567 = wasm_v128_load(input + 4);
48     const v128_t vi89AB = wasm_v128_load(input + 8);
49     const v128_t viCDEF = wasm_v128_load(input + 12);
50     const v128_t viGHIJ = wasm_v128_load(input + 16);
51     input += 20;
52 
53     // Subtract maximum input x := i - i_max. This implies x <= 0.
54     const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
55     const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
56     const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
57     const v128_t vxCDEF = wasm_f32x4_sub(viCDEF, vi_max);
58     const v128_t vxGHIJ = wasm_f32x4_sub(viGHIJ, vi_max);
59 
60     // Compute reduced argument elements := round(x / log(2)).
61     v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
62     v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
63     v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
64     v128_t vnCDEF = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxCDEF, vlog2e));
65     v128_t vnGHIJ = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxGHIJ, vlog2e));
66 
67     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
68     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
69     const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
70     const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
71     const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
72     const v128_t vsCDEF = wasm_i32x4_shl(vnCDEF, 23);
73     const v128_t vsGHIJ = wasm_i32x4_shl(vnGHIJ, 23);
74 
75     // Subtract the large number back to get final elements := round(x / log(2)).
76     vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
77     vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
78     vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
79     vnCDEF = wasm_f32x4_sub(vnCDEF, vmagic_bias);
80     vnGHIJ = wasm_f32x4_sub(vnGHIJ, vmagic_bias);
81 
82     // Compute reduced argument t := x - elements * log(2).
83     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
84     v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
85     v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
86     v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
87     v128_t vtCDEF = wasm_f32x4_add(vxCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_hi));
88     v128_t vtGHIJ = wasm_f32x4_add(vxGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_hi));
89 
90     vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
91     vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
92     vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
93     vtCDEF = wasm_f32x4_add(vtCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_lo));
94     vtGHIJ = wasm_f32x4_add(vtGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_lo));
95 
96     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
97     v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
98     v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
99     v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
100     v128_t vpCDEF = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtCDEF));
101     v128_t vpGHIJ = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtGHIJ));
102 
103     vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
104     vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
105     vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
106     vpCDEF = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpCDEF, vtCDEF));
107     vpGHIJ = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
108 
109     vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
110     vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
111     vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
112     vpCDEF = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpCDEF, vtCDEF));
113     vpGHIJ = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
114 
115     vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
116     vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
117     vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
118     vpCDEF = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpCDEF, vtCDEF));
119     vpGHIJ = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
120 
121     // Reconstruct the final f value:
122     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
123     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
124     //     = s + (t * s) * p
125     vt0123 = wasm_f32x4_mul(vt0123, vs0123);
126     vt4567 = wasm_f32x4_mul(vt4567, vs4567);
127     vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
128     vtCDEF = wasm_f32x4_mul(vtCDEF, vsCDEF);
129     vtGHIJ = wasm_f32x4_mul(vtGHIJ, vsGHIJ);
130 
131     v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
132     v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
133     v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
134     v128_t vfCDEF = wasm_f32x4_add(vsCDEF, wasm_f32x4_mul(vtCDEF, vpCDEF));
135     v128_t vfGHIJ = wasm_f32x4_add(vsGHIJ, wasm_f32x4_mul(vtGHIJ, vpGHIJ));
136 
137     // For inputs below zero cutoff, replace output with +0.0f.
138     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
139     vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
140     vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
141     vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
142     vfCDEF = wasm_v128_andnot(vfCDEF, wasm_f32x4_lt(vxCDEF, vdenorm_cutoff));
143     vfGHIJ = wasm_v128_andnot(vfGHIJ, wasm_f32x4_lt(vxGHIJ, vdenorm_cutoff));
144 
145     // Store 20 (5x4) outputs at a time.
146     wasm_v128_store(output, vf0123);
147     wasm_v128_store(output + 4, vf4567);
148     wasm_v128_store(output + 8, vf89AB);
149     wasm_v128_store(output + 12, vfCDEF);
150     wasm_v128_store(output + 16, vfGHIJ);
151     output += 20;
152 
153     // Accumulate computed exponents.
154     vacc0 = wasm_f32x4_add(vacc0, vf0123);
155     vacc0 = wasm_f32x4_add(vacc0, vf4567);
156     vacc0 = wasm_f32x4_add(vacc0, vf89AB);
157     vacc0 = wasm_f32x4_add(vacc0, vfCDEF);
158     vacc0 = wasm_f32x4_add(vacc0, vfGHIJ);
159   }
160 
161   v128_t vacc = vacc0;
162   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
163     // Load 4 inputs at a time.
164     const v128_t vi = wasm_v128_load(input);
165     input += 4;
166 
167     // Subtract maximum input x := i - i_max. This implies x <= 0.
168     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
169 
170     // Compute reduced argument elements := round(x / log(2)).
171     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
172 
173     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
174     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
175     const v128_t vs = wasm_i32x4_shl(vn, 23);
176 
177     // Subtract the large number back to get final elements := round(x / log(2)).
178     vn = wasm_f32x4_sub(vn, vmagic_bias);
179 
180     // Compute reduced argument t := x - elements * log(2).
181     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
182     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
183     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
184 
185     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
186     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
187     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
188     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
189     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
190 
191     // Reconstruct the final f value:
192     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
193     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
194     //     = s + (t * s) * p
195     vt = wasm_f32x4_mul(vt, vs);
196     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
197 
198     // For inputs below zero cutoff, replace output with +0.0f.
199     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
200     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
201 
202     // Store 4 outputs at a time.
203     wasm_v128_store(output, vf);
204     output += 4;
205 
206     // Accumulate computed exponents.
207     vacc = wasm_f32x4_add(vacc, vf);
208   }
209   vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
210   float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
211   if (elements != 0) {
212     assert(elements >= 1 * sizeof(float));
213     assert(elements <= 3 * sizeof(float));
214     // Load 4 inputs at a time.
215     const v128_t vi = wasm_v128_load(input);
216 
217     // Subtract maximum input x := i - i_max. This implies x <= 0.
218     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
219 
220     // Compute reduced argument elements := round(x / log(2)).
221     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
222 
223     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
224     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
225     const v128_t vs = wasm_i32x4_shl(vn, 23);
226 
227     // Subtract the large number back to get final elements := round(x / log(2)).
228     vn = wasm_f32x4_sub(vn, vmagic_bias);
229 
230     // Compute reduced argument t := x - elements * log(2).
231     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
232     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
233     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
234 
235     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
236     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
237     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
238     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
239     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
240 
241     // Reconstruct the final f value:
242     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
243     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
244     //     = s + (t * s) * p
245     vt = wasm_f32x4_mul(vt, vs);
246     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
247 
248     // For inputs below zero cutoff, replace output with +0.0f.
249     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
250     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
251 
252     if (elements & (2 * sizeof(float))) {
253       // Store and accumulate 2 outputs at a time.
254       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
255       output[0] = vf0;
256       vsum += vf0;
257 
258       const float vf1 = wasm_f32x4_extract_lane(vf, 1);
259       output[1] = vf1;
260       vsum += vf1;
261 
262       vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
263       output += 2;
264     }
265     if (elements & (1 * sizeof(float))) {
266       // Store 1 output at a time.
267       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
268       *output = vf0;
269       vsum += vf0;
270     }
271   }
272   // Reduce 4 elements in the SIMD register
273   *sum = vsum;
274 }
275