1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <wasm_simd128.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x8(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x8(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24 {
25 assert(elements % sizeof(float) == 0);
26
27 const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30 const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33 const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34
35 const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36 const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37 const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38 const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39 const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40
41 const v128_t vi_max = wasm_f32x4_splat(max);
42
43 v128_t vacc0 = wasm_f32x4_splat(0.0f);
44 for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
45 // Load 8 (2x4) inputs at a time.
46 const v128_t vi0123 = wasm_v128_load(input);
47 const v128_t vi4567 = wasm_v128_load(input + 4);
48 input += 8;
49
50 // Subtract maximum input x := i - i_max. This implies x <= 0.
51 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
52 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
53
54 // Compute reduced argument elements := round(x / log(2)).
55 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
56 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
57
58 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
59 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
60 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
61 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
62
63 // Subtract the large number back to get final elements := round(x / log(2)).
64 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
65 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
66
67 // Compute reduced argument t := x - elements * log(2).
68 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
69 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
70 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
71
72 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
73 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
74
75 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
76 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
77 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
78
79 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
80 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
81
82 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
83 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
84
85 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
86 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
87
88 // Reconstruct the final f value:
89 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
90 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
91 // = s + (t * s) * p
92 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
93 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
94
95 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
96 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
97
98 // For inputs below zero cutoff, replace output with +0.0f.
99 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
100 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
101 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
102
103 // Store 8 (2x4) outputs at a time.
104 wasm_v128_store(output, vf0123);
105 wasm_v128_store(output + 4, vf4567);
106 output += 8;
107
108 // Accumulate computed exponents.
109 vacc0 = wasm_f32x4_add(vacc0, vf0123);
110 vacc0 = wasm_f32x4_add(vacc0, vf4567);
111 }
112
113 v128_t vacc = vacc0;
114 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
115 // Load 4 inputs at a time.
116 const v128_t vi = wasm_v128_load(input);
117 input += 4;
118
119 // Subtract maximum input x := i - i_max. This implies x <= 0.
120 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
121
122 // Compute reduced argument elements := round(x / log(2)).
123 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
124
125 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
126 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
127 const v128_t vs = wasm_i32x4_shl(vn, 23);
128
129 // Subtract the large number back to get final elements := round(x / log(2)).
130 vn = wasm_f32x4_sub(vn, vmagic_bias);
131
132 // Compute reduced argument t := x - elements * log(2).
133 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
134 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
135 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
136
137 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
138 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
139 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
140 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
141 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
142
143 // Reconstruct the final f value:
144 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
145 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
146 // = s + (t * s) * p
147 vt = wasm_f32x4_mul(vt, vs);
148 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
149
150 // For inputs below zero cutoff, replace output with +0.0f.
151 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
152 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
153
154 // Store 4 outputs at a time.
155 wasm_v128_store(output, vf);
156 output += 4;
157
158 // Accumulate computed exponents.
159 vacc = wasm_f32x4_add(vacc, vf);
160 }
161 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
162 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
163 if (elements != 0) {
164 assert(elements >= 1 * sizeof(float));
165 assert(elements <= 3 * sizeof(float));
166 // Load 4 inputs at a time.
167 const v128_t vi = wasm_v128_load(input);
168
169 // Subtract maximum input x := i - i_max. This implies x <= 0.
170 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
171
172 // Compute reduced argument elements := round(x / log(2)).
173 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
174
175 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
176 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
177 const v128_t vs = wasm_i32x4_shl(vn, 23);
178
179 // Subtract the large number back to get final elements := round(x / log(2)).
180 vn = wasm_f32x4_sub(vn, vmagic_bias);
181
182 // Compute reduced argument t := x - elements * log(2).
183 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
184 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
185 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
186
187 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
188 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
189 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
190 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
191 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
192
193 // Reconstruct the final f value:
194 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
195 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
196 // = s + (t * s) * p
197 vt = wasm_f32x4_mul(vt, vs);
198 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
199
200 // For inputs below zero cutoff, replace output with +0.0f.
201 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
202 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
203
204 if (elements & (2 * sizeof(float))) {
205 // Store and accumulate 2 outputs at a time.
206 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
207 output[0] = vf0;
208 vsum += vf0;
209
210 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
211 output[1] = vf1;
212 vsum += vf1;
213
214 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
215 output += 2;
216 }
217 if (elements & (1 * sizeof(float))) {
218 // Store 1 output at a time.
219 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
220 *output = vf0;
221 vsum += vf0;
222 }
223 }
224 // Reduce 4 elements in the SIMD register
225 *sum = vsum;
226 }
227