1// Copyright 2020 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$assert ELEMENTS_TILE % 4 == 0 7$assert ELEMENTS_TILE >= 4 8$SIMD_TILE = ELEMENTS_TILE // 4 9$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 10$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32" 11#include <assert.h> 12 13#include <arm_neon.h> 14 15#include <xnnpack/common.h> 16#include <xnnpack/raddstoreexpminusmax.h> 17 18 19void xnn_f32_raddstoreexpminusmax_ukernel__${"neonfma" if FMA else "neon"}_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( 20 size_t elements, 21 const float* input, 22 float* output, 23 float* sum, 24 float max) XNN_DISABLE_TSAN 25{ 26 assert(elements % sizeof(float) == 0); 27 28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f); 29 // The smallest x for which expf(x) is normalized. 30 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f); 31 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f); 32 $if FMA: 33 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f); 34 const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f); 35 $else: 36 // Last 7 bits are zeroes 37 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f); 38 const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f); 39 40 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f); 41 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f); 42 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f); 43 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f); 44 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f); 45 46 const float32x4_t vi_max = vdupq_n_f32(max); 47 48 $if ELEMENTS_TILE > 4: 49 $for K in range(ACCUMULATORS): 50 float32x4_t vacc${K} = vmovq_n_f32(0.0f); 51 for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { 52 // Load ${ELEMENTS_TILE} (${SIMD_TILE}x4) inputs at a time. 53 $for N in range(0, ELEMENTS_TILE, 4): 54 const float32x4_t vi${ABC[N:N+4]} = vld1q_f32(input); input += 4; 55 56 // Subtract maximum input x := i - i_max. This implies x <= 0. 57 $for N in range(0, ELEMENTS_TILE, 4): 58 const float32x4_t vx${ABC[N:N+4]} = vsubq_f32(vi${ABC[N:N+4]}, vi_max); 59 60 // Compute reduced argument n := round(x / log(2)). 61 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the 62 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. 63 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because 64 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end 65 // of the algorithm. 66 $for N in range(0, ELEMENTS_TILE, 4): 67 float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vx${ABC[N:N+4]}, vlog2e); 68 69 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. 70 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. 71 $for N in range(0, ELEMENTS_TILE, 4): 72 const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), 23)); 73 74 // Subtract the large number back to get final n := round(x / log(2)). 75 $for N in range(0, ELEMENTS_TILE, 4): 76 vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias); 77 78 // Compute reduced argument t := z - n * log(2). 79 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. 80 $for N in range(0, ELEMENTS_TILE, 4): 81 float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_hi); 82 83 $for N in range(0, ELEMENTS_TILE, 4): 84 vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_lo); 85 86 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. 87 $for N in range(0, ELEMENTS_TILE, 4): 88 float32x4_t vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc4, vc5, vt${ABC[N:N+4]}); 89 90 $for N in range(0, ELEMENTS_TILE, 4): 91 vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc3, vp${ABC[N:N+4]}, vt${ABC[N:N+4]}); 92 93 $for N in range(0, ELEMENTS_TILE, 4): 94 vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc2, vp${ABC[N:N+4]}, vt${ABC[N:N+4]}); 95 96 $for N in range(0, ELEMENTS_TILE, 4): 97 vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc1, vp${ABC[N:N+4]}, vt${ABC[N:N+4]}); 98 99 // Reconstruct the final f value: 100 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) 101 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) 102 // = s + (t * s) * p 103 $for N in range(0, ELEMENTS_TILE, 4): 104 vt${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vs${ABC[N:N+4]}); 105 106 $for N in range(0, ELEMENTS_TILE, 4): 107 float32x4_t vf${ABC[N:N+4]} = ${VMULADDQ_F32}(vs${ABC[N:N+4]}, vp${ABC[N:N+4]}, vt${ABC[N:N+4]}); 108 109 // For inputs below denormal cutoff, replace output with +0.0f. 110 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. 111 $for N in range(0, ELEMENTS_TILE, 4): 112 vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcltq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff))); 113 114 // Store ${ELEMENTS_TILE} (${SIMD_TILE}x4) outputs at a time. 115 $for N in range(0, ELEMENTS_TILE, 4): 116 vst1q_f32(output, vf${ABC[N:N+4]}); output += 4; 117 118 // Accumulate computed exponents. 119 $for N in range(0, ELEMENTS_TILE, 4): 120 vacc${N % ACCUMULATORS} = vaddq_f32(vacc${N % ACCUMULATORS}, vf${ABC[N:N+4]}); 121 } 122 $if ACCUMULATORS > 1: 123 // Add up all accumulators to vacc0 124 $ACC_SLICE = 1 125 $while ACC_SLICE < ACCUMULATORS: 126 $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): 127 $if A + ACC_SLICE < ACCUMULATORS: 128 vacc${A} = vaddq_f32(vacc${A}, vacc${A + ACC_SLICE}); 129 $ACC_SLICE *= 2 130 131 float32x4_t vacc = vacc0; 132 $else: 133 float32x4_t vacc = vmovq_n_f32(0.0f); 134 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) { 135 // Load 4 inputs at a time. 136 const float32x4_t vi = vld1q_f32(input); input += 4; 137 138 // Subtract maximum input x := i - i_max. This implies x <= 0. 139 const float32x4_t vx = vsubq_f32(vi, vi_max); 140 141 // Compute reduced argument n := round(x / log(2)). 142 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the 143 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. 144 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because 145 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end 146 // of the algorithm. 147 float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e); 148 149 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. 150 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. 151 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); 152 153 // Subtract the large number back to get final n := round(x / log(2)). 154 vn = vsubq_f32(vn, vmagic_bias); 155 156 // Compute reduced argument t := z - n * log(2). 157 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. 158 float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi); 159 vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo); 160 161 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. 162 float32x4_t vp = ${VMULADDQ_F32}(vc4, vc5, vt); 163 vp = ${VMULADDQ_F32}(vc3, vp, vt); 164 vp = ${VMULADDQ_F32}(vc2, vp, vt); 165 vp = ${VMULADDQ_F32}(vc1, vp, vt); 166 167 // Reconstruct the final f value: 168 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) 169 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) 170 // = s + (t * s) * p 171 vt = vmulq_f32(vt, vs); 172 float32x4_t vf = ${VMULADDQ_F32}(vs, vp, vt); 173 174 // For inputs below denormal cutoff, replace output with +0.0f. 175 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. 176 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff))); 177 178 // Store 4 outputs at a time. 179 vst1q_f32(output, vf); output += 4; 180 181 // Accumulate computed exponents. 182 vacc = vaddq_f32(vacc, vf); 183 } 184#if XNN_ARCH_ARM64 185 float vacc_lo = vaddvq_f32(vacc); 186#else 187 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc)); 188#endif 189 if (elements != 0) { 190 assert(elements >= 1 * sizeof(float)); 191 assert(elements <= 3 * sizeof(float)); 192 // Load 4 inputs at a time. 193 const float32x4_t vi = vld1q_f32(input); input += 4; 194 195 // Subtract maximum input x := i - i_max. This implies x <= 0. 196 const float32x4_t vx = vsubq_f32(vi, vi_max); 197 198 // Compute reduced argument n := round(x / log(2)). 199 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the 200 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. 201 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because 202 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end 203 // of the algorithm. 204 float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e); 205 206 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. 207 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. 208 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); 209 210 // Subtract the large number back to get final n := round(x / log(2)). 211 vn = vsubq_f32(vn, vmagic_bias); 212 213 // Compute reduced argument t := z - n * log(2). 214 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. 215 float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi); 216 vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo); 217 218 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. 219 float32x4_t vp = ${VMULADDQ_F32}(vc4, vc5, vt); 220 vp = ${VMULADDQ_F32}(vc3, vp, vt); 221 vp = ${VMULADDQ_F32}(vc2, vp, vt); 222 vp = ${VMULADDQ_F32}(vc1, vp, vt); 223 224 // Reconstruct the final f value: 225 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) 226 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) 227 // = s + (t * s) * p 228 vt = vmulq_f32(vt, vs); 229 float32x4_t vf = ${VMULADDQ_F32}(vs, vp, vt); 230 231 // For inputs below denormal cutoff, replace output with +0.0f. 232 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. 233 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff))); 234 235 float32x2_t vf_lo = vget_low_f32(vf); 236 if (elements & (2 * sizeof(float))) { 237 // Store 2 outputs at a time. 238 vst1_f32(output, vf_lo); output += 2; 239 240 // Accumulate 2 computed exponents. 241 #if XNN_ARCH_ARM64 242 vacc_lo += vaddv_f32(vf_lo); 243 #else 244 vacc_lo = vadd_f32(vacc_lo, vf_lo); 245 #endif 246 247 vf_lo = vget_high_f32(vf); 248 } 249 if (elements & (1 * sizeof(float))) { 250 // Store 1 output at a time. 251 vst1_lane_f32(output, vf_lo, 0); 252 253 // Accumulate 1 computed exponent. 254 #if XNN_ARCH_ARM64 255 vacc_lo += vget_lane_f32(vf_lo, 0); 256 #else 257 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32))); 258 #endif 259 } 260 } 261 // Reduce 4 elements in the SIMD register 262#if XNN_ARCH_ARM64 263 *sum = vacc_lo; 264#else 265 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0); 266#endif 267} 268