• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert ELEMENTS_TILE >= 1
7$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
8#include <assert.h>
9
10#include <xnnpack/common.h>
11#include <xnnpack/raddstoreexpminusmax.h>
12
13#include <fp16/bitcasts.h>
14
15
16void xnn_f32_raddstoreexpminusmax_ukernel__scalar_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
17    size_t elements,
18    const float* input,
19    float* output,
20    float* sum,
21    float vi_max)
22{
23  assert(elements % sizeof(float) == 0);
24
25  const float vmagic_bias = 0x1.8000FEp23f;
26  // The smallest x for which expf(x) is normalized.
27  const float vdenorm_cutoff = -0x1.5D589Ep6f;
28  const float vlog2e = 0x1.715476p+0f;
29  // Last 7 bits are zeroes
30  const float vminus_ln2_hi = -0x1.62E400p-1f;
31  const float vminus_ln2_lo = -0x1.7F7D1Cp-20f;
32
33  const float vc1 = 0x1.FFFFF6p-1f;
34  const float vc2 = 0x1.FFFDC6p-2f;
35  const float vc3 = 0x1.555A80p-3f;
36  const float vc4 = 0x1.573A1Ap-5f;
37  const float vc5 = 0x1.0F9F9Cp-7f;
38
39  $if ELEMENTS_TILE > 1:
40    $for K in range(ACCUMULATORS):
41      float vacc${K} = 0.0f;
42    for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
43      // Load ${ELEMENTS_TILE} inputs at a time.
44      $for N in range(ELEMENTS_TILE):
45        const float vi${N} = input[${N}];
46      input += ${ELEMENTS_TILE};
47
48      // Subtract maximum input x := i - i_max. This implies x <= 0.
49      $for N in range(ELEMENTS_TILE):
50        const float vx${N} = vi${N} - vi_max;
51
52      // Compute reduced argument n := round(x / log(2)).
53      // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
54      // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
55      // certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
56      // anyway. We fixup the result for such inputs at the very end of the algorithm.
57      $for N in range(ELEMENTS_TILE):
58        float vn${N} = vx${N} * vlog2e + vmagic_bias;
59
60      // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
61      // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
62      $for N in range(ELEMENTS_TILE):
63        const float vs${N} = fp32_from_bits(fp32_to_bits(vn${N}) << 23);
64
65      // Subtract the large number back to get final n := round(x / log(2)).
66      $for N in range(ELEMENTS_TILE):
67        vn${N} -= vmagic_bias;
68
69      // Compute reduced argument t := x - n * log(2).
70      // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
71      $for N in range(ELEMENTS_TILE):
72        float vt${N} = vn${N} * vminus_ln2_hi + vx${N};
73
74      $for N in range(ELEMENTS_TILE):
75        vt${N} = vn${N} * vminus_ln2_lo + vt${N};
76
77      // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
78      $for N in range(ELEMENTS_TILE):
79        float vp${N} = vc5 * vt${N} + vc4;
80
81      $for N in range(ELEMENTS_TILE):
82        vp${N} = vp${N} * vt${N} + vc3;
83
84      $for N in range(ELEMENTS_TILE):
85        vp${N} = vp${N} * vt${N} + vc2;
86
87      $for N in range(ELEMENTS_TILE):
88        vp${N} = vp${N} * vt${N} + vc1;
89
90      // Reconstruct the final f value:
91      //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
92      //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
93      //     = s + (t * s) * p
94      $for N in range(ELEMENTS_TILE):
95        vt${N} *= vs${N};
96
97      $for N in range(ELEMENTS_TILE):
98        float vf${N} = vt${N} * vp${N} + vs${N};
99
100      // For inputs below denormal cutoff, replace output with +0.0f.
101      // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
102      $for N in range(ELEMENTS_TILE):
103        if XNN_UNPREDICTABLE(vx${N} < vdenorm_cutoff) {
104          vf${N} = 0.0f;
105        }
106
107      // Store ${ELEMENTS_TILE} outputs at a time.
108      $for N in range(ELEMENTS_TILE):
109        output[${N}] = vf${N};
110      output += ${ELEMENTS_TILE};
111
112      // Accumulate computed exponents.
113      $for N in range(ELEMENTS_TILE):
114        vacc${N % ACCUMULATORS} += vf${N};
115    }
116    $if ACCUMULATORS > 1:
117      // Add up all accumulators to vacc0
118      $ACC_SLICE = 1
119      $while ACC_SLICE < ACCUMULATORS:
120        $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
121          $if A + ACC_SLICE < ACCUMULATORS:
122            vacc${A} += vacc${A + ACC_SLICE};
123        $ACC_SLICE *= 2
124
125    float vacc = vacc0;
126  $else:
127    float vacc = 0.0f;
128  for (; elements >= sizeof(float); elements -= sizeof(float)) {
129    // Load 1 input at a time.
130    const float vi = *input++;
131
132    // Subtract maximum input x := i - i_max. This implies x <= 0.
133    const float vx = vi - vi_max;
134
135    // Compute reduced argument n := round(x / log(2)).
136    // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
137    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
138    // certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-87.336540, 0.0] underflow expf(x)
139    // anyway. We fixup the result for such inputs at the very end of the algorithm.
140    float vn = vx * vlog2e + vmagic_bias;
141
142    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
143    // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
144    const float vs = fp32_from_bits(fp32_to_bits(vn) << 23);
145
146    // Subtract the large number back to get final n := round(x / log(2)).
147    vn -= vmagic_bias;
148
149    // Compute reduced argument t := x - n * log(2).
150    // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
151    float vt = vn * vminus_ln2_hi + vx;
152    vt = vn * vminus_ln2_lo + vt;
153
154    // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
155    float vp = vc5 * vt + vc4;
156    vp = vp * vt + vc3;
157    vp = vp * vt + vc2;
158    vp = vp * vt + vc1;
159
160    // Reconstruct the final f value:
161    //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
162    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
163    //     = s + (t * s) * p
164    vt *= vs;
165    float vf = vt * vp + vs;
166
167    // For inputs below denormal cutoff, replace output with +0.0f.
168    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
169    if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
170      vf = 0.0f;
171    }
172
173    // Store 1 output at a time.
174    *output++ = vf;
175
176    // Accumulate computed exponents.
177    vacc += vf;
178  }
179  *sum = vacc;
180}
181