• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleexpminusmax.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x16(size_t elements,const float * input,float * output,float scale,float max)20 void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x16(
21     size_t elements,
22     const float* input,
23     float* output,
24     float scale,
25     float max)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
30   // The smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
35 
36   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
37   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
38   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
39   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
40   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
41 
42   const __m256 vscale = _mm256_set1_ps(scale);
43   const __m256 vi_max = _mm256_set1_ps(max);
44 
45   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
46     // Load 16 (2x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     input += 16;
50 
51     // Subtract maximum input x := i - i_max. This implies x <= 0.
52     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
53     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
54 
55     // Compute reduced argument elements := round(x / log(2)).
56     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
57     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
58 
59     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
60     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
61     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
62     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
63 
64     // Subtract the large number back to get final elements := round(x / log(2)).
65     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
66     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
67 
68     // Compute reduced argument t := x - elements * log(2).
69     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
70     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
71     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
72 
73     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
74     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
75 
76     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
77     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
78     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
79 
80     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
81     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
82 
83     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
84     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
85 
86     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
87     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
88 
89     // Reconstruct the final f value:
90     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
91     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
92     //     = s + (t * s) * p
93     vt0 = _mm256_mul_ps(vt0, vs0);
94     vt1 = _mm256_mul_ps(vt1, vs1);
95 
96     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
97     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
98 
99     // For inputs below zero cutoff, replace output with +0.0f.
100     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
101     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
102     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
103 
104     // Multiply by scale.
105     vf0 = _mm256_mul_ps(vf0, vscale);
106     vf1 = _mm256_mul_ps(vf1, vscale);
107 
108     // Store 16 (2x8) outputs at a time.
109     _mm256_storeu_ps(output, vf0);
110     _mm256_storeu_ps(output + 8, vf1);
111     output += 16;
112   }
113   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
114     // Load 8 inputs at a time.
115     const __m256 vi = _mm256_loadu_ps(input);
116     input += 8;
117 
118     // Subtract maximum input x := i - i_max. This implies x <= 0.
119     const __m256 vx = _mm256_sub_ps(vi, vi_max);
120 
121     // Compute reduced argument elements := round(x / log(2)).
122     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
123 
124     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
125     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
126     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
127 
128     // Subtract the large number back to get final elements := round(x / log(2)).
129     vn = _mm256_sub_ps(vn, vmagic_bias);
130 
131     // Compute reduced argument t := x - elements * log(2).
132     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
133     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
134     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
135 
136     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
137     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
138     vp = _mm256_fmadd_ps(vp, vt, vc3);
139     vp = _mm256_fmadd_ps(vp, vt, vc2);
140     vp = _mm256_fmadd_ps(vp, vt, vc1);
141 
142     // Reconstruct the final f value:
143     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
144     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
145     //     = s + (t * s) * p
146     vt = _mm256_mul_ps(vt, vs);
147     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
148 
149     // For inputs below zero cutoff, replace output with +0.0f.
150     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
151     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
152 
153     // Multiply by scale.
154     vf = _mm256_mul_ps(vf, vscale);
155 
156     // Store 64 (8x8) outputs at a time.
157     _mm256_storeu_ps(output, vf);
158     output += 8;
159   }
160   if (elements != 0) {
161     assert(elements >= 1 * sizeof(float));
162     assert(elements <= 7 * sizeof(float));
163     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
164 
165     // Load up to 7 inputs at a time.
166     const __m256 vi = _mm256_maskload_ps(input, vmask);
167 
168     // Subtract maximum input x := i - i_max. This implies x <= 0.
169     const __m256 vx = _mm256_sub_ps(vi, vi_max);
170 
171     // Compute reduced argument elements := round(x / log(2)).
172     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
173 
174     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
175     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
176     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
177 
178     // Subtract the large number back to get final elements := round(x / log(2)).
179     vn = _mm256_sub_ps(vn, vmagic_bias);
180 
181     // Compute reduced argument t := x - elements * log(2).
182     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
183     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
184     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
185 
186     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
187     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
188     vp = _mm256_fmadd_ps(vp, vt, vc3);
189     vp = _mm256_fmadd_ps(vp, vt, vc2);
190     vp = _mm256_fmadd_ps(vp, vt, vc1);
191 
192     // Reconstruct the final f value:
193     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
194     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
195     //     = s + (t * s) * p
196     vt = _mm256_mul_ps(vt, vs);
197     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
198 
199     // For inputs below zero cutoff, replace output with +0.0f.
200     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
201     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
202 
203     // Multiply by scale.
204     vf = _mm256_mul_ps(vf, vscale);
205 
206     // Store up to 7 outputs at a time.
207     _mm256_maskstore_ps(output, vmask, vf);
208   }
209 }
210