• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleexpminusmax.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x40(size_t elements,const float * input,float * output,float scale,float max)20 void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x40(
21     size_t elements,
22     const float* input,
23     float* output,
24     float scale,
25     float max)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
30   // The smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
35 
36   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
37   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
38   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
39   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
40   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
41 
42   const __m256 vscale = _mm256_set1_ps(scale);
43   const __m256 vi_max = _mm256_set1_ps(max);
44 
45   for (; elements >= 40 * sizeof(float); elements -= 40 * sizeof(float)) {
46     // Load 40 (5x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     const __m256 vi2 = _mm256_loadu_ps(input + 16);
50     const __m256 vi3 = _mm256_loadu_ps(input + 24);
51     const __m256 vi4 = _mm256_loadu_ps(input + 32);
52     input += 40;
53 
54     // Subtract maximum input x := i - i_max. This implies x <= 0.
55     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
56     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
57     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
58     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
59     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
60 
61     // Compute reduced argument elements := round(x / log(2)).
62     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
63     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
64     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
65     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
66     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
67 
68     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
69     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
70     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
71     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
72     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
73     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
74     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
75 
76     // Subtract the large number back to get final elements := round(x / log(2)).
77     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
78     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
79     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
80     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
81     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
82 
83     // Compute reduced argument t := x - elements * log(2).
84     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
85     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
86     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
87     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
88     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
89     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
90 
91     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
92     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
93     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
94     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
95     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
96 
97     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
98     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
99     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
100     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
101     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
102     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
103 
104     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
105     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
106     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
107     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
108     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
109 
110     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
111     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
112     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
113     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
114     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
115 
116     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
117     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
118     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
119     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
120     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
121 
122     // Reconstruct the final f value:
123     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
124     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
125     //     = s + (t * s) * p
126     vt0 = _mm256_mul_ps(vt0, vs0);
127     vt1 = _mm256_mul_ps(vt1, vs1);
128     vt2 = _mm256_mul_ps(vt2, vs2);
129     vt3 = _mm256_mul_ps(vt3, vs3);
130     vt4 = _mm256_mul_ps(vt4, vs4);
131 
132     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
133     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
134     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
135     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
136     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
137 
138     // For inputs below zero cutoff, replace output with +0.0f.
139     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
140     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
141     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
142     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
143     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
144     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
145 
146     // Multiply by scale.
147     vf0 = _mm256_mul_ps(vf0, vscale);
148     vf1 = _mm256_mul_ps(vf1, vscale);
149     vf2 = _mm256_mul_ps(vf2, vscale);
150     vf3 = _mm256_mul_ps(vf3, vscale);
151     vf4 = _mm256_mul_ps(vf4, vscale);
152 
153     // Store 40 (5x8) outputs at a time.
154     _mm256_storeu_ps(output, vf0);
155     _mm256_storeu_ps(output + 8, vf1);
156     _mm256_storeu_ps(output + 16, vf2);
157     _mm256_storeu_ps(output + 24, vf3);
158     _mm256_storeu_ps(output + 32, vf4);
159     output += 40;
160   }
161   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
162     // Load 8 inputs at a time.
163     const __m256 vi = _mm256_loadu_ps(input);
164     input += 8;
165 
166     // Subtract maximum input x := i - i_max. This implies x <= 0.
167     const __m256 vx = _mm256_sub_ps(vi, vi_max);
168 
169     // Compute reduced argument elements := round(x / log(2)).
170     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
171 
172     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
173     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
174     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
175 
176     // Subtract the large number back to get final elements := round(x / log(2)).
177     vn = _mm256_sub_ps(vn, vmagic_bias);
178 
179     // Compute reduced argument t := x - elements * log(2).
180     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
181     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
182     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
183 
184     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
185     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
186     vp = _mm256_fmadd_ps(vp, vt, vc3);
187     vp = _mm256_fmadd_ps(vp, vt, vc2);
188     vp = _mm256_fmadd_ps(vp, vt, vc1);
189 
190     // Reconstruct the final f value:
191     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
192     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
193     //     = s + (t * s) * p
194     vt = _mm256_mul_ps(vt, vs);
195     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
196 
197     // For inputs below zero cutoff, replace output with +0.0f.
198     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
199     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
200 
201     // Multiply by scale.
202     vf = _mm256_mul_ps(vf, vscale);
203 
204     // Store 64 (8x8) outputs at a time.
205     _mm256_storeu_ps(output, vf);
206     output += 8;
207   }
208   if (elements != 0) {
209     assert(elements >= 1 * sizeof(float));
210     assert(elements <= 7 * sizeof(float));
211     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
212 
213     // Load up to 7 inputs at a time.
214     const __m256 vi = _mm256_maskload_ps(input, vmask);
215 
216     // Subtract maximum input x := i - i_max. This implies x <= 0.
217     const __m256 vx = _mm256_sub_ps(vi, vi_max);
218 
219     // Compute reduced argument elements := round(x / log(2)).
220     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
221 
222     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
223     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
224     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
225 
226     // Subtract the large number back to get final elements := round(x / log(2)).
227     vn = _mm256_sub_ps(vn, vmagic_bias);
228 
229     // Compute reduced argument t := x - elements * log(2).
230     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
231     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
232     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
233 
234     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
235     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
236     vp = _mm256_fmadd_ps(vp, vt, vc3);
237     vp = _mm256_fmadd_ps(vp, vt, vc2);
238     vp = _mm256_fmadd_ps(vp, vt, vc1);
239 
240     // Reconstruct the final f value:
241     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
242     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
243     //     = s + (t * s) * p
244     vt = _mm256_mul_ps(vt, vs);
245     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
246 
247     // For inputs below zero cutoff, replace output with +0.0f.
248     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
249     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
250 
251     // Multiply by scale.
252     vf = _mm256_mul_ps(vf, vscale);
253 
254     // Store up to 7 outputs at a time.
255     _mm256_maskstore_ps(output, vmask, vf);
256   }
257 }
258