• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleexpminusmax.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x64(size_t elements,const float * input,float * output,float scale,float max)20 void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x64(
21     size_t elements,
22     const float* input,
23     float* output,
24     float scale,
25     float max)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
30   // The smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
35 
36   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
37   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
38   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
39   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
40   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
41 
42   const __m256 vscale = _mm256_set1_ps(scale);
43   const __m256 vi_max = _mm256_set1_ps(max);
44 
45   for (; elements >= 64 * sizeof(float); elements -= 64 * sizeof(float)) {
46     // Load 64 (8x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     const __m256 vi2 = _mm256_loadu_ps(input + 16);
50     const __m256 vi3 = _mm256_loadu_ps(input + 24);
51     const __m256 vi4 = _mm256_loadu_ps(input + 32);
52     const __m256 vi5 = _mm256_loadu_ps(input + 40);
53     const __m256 vi6 = _mm256_loadu_ps(input + 48);
54     const __m256 vi7 = _mm256_loadu_ps(input + 56);
55     input += 64;
56 
57     // Subtract maximum input x := i - i_max. This implies x <= 0.
58     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
59     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
60     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
61     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
62     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
63     const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
64     const __m256 vx6 = _mm256_sub_ps(vi6, vi_max);
65     const __m256 vx7 = _mm256_sub_ps(vi7, vi_max);
66 
67     // Compute reduced argument elements := round(x / log(2)).
68     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
69     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
70     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
71     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
72     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
73     __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
74     __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias);
75     __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias);
76 
77     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
78     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
79     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
80     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
81     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
82     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
83     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
84     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
85     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
86     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
87 
88     // Subtract the large number back to get final elements := round(x / log(2)).
89     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
90     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
91     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
92     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
93     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
94     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
95     vn6 = _mm256_sub_ps(vn6, vmagic_bias);
96     vn7 = _mm256_sub_ps(vn7, vmagic_bias);
97 
98     // Compute reduced argument t := x - elements * log(2).
99     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
100     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
101     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
102     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
103     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
104     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
105     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
106     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
107     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
108 
109     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
110     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
111     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
112     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
113     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
114     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
115     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
116     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
117 
118     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
119     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
120     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
121     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
122     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
123     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
124     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
125     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
126     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
127 
128     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
129     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
130     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
131     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
132     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
133     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
134     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
135     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
136 
137     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
138     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
139     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
140     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
141     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
142     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
143     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
144     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
145 
146     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
147     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
148     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
149     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
150     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
151     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
152     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
153     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
154 
155     // Reconstruct the final f value:
156     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
157     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
158     //     = s + (t * s) * p
159     vt0 = _mm256_mul_ps(vt0, vs0);
160     vt1 = _mm256_mul_ps(vt1, vs1);
161     vt2 = _mm256_mul_ps(vt2, vs2);
162     vt3 = _mm256_mul_ps(vt3, vs3);
163     vt4 = _mm256_mul_ps(vt4, vs4);
164     vt5 = _mm256_mul_ps(vt5, vs5);
165     vt6 = _mm256_mul_ps(vt6, vs6);
166     vt7 = _mm256_mul_ps(vt7, vs7);
167 
168     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
169     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
170     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
171     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
172     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
173     __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
174     __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6);
175     __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7);
176 
177     // For inputs below zero cutoff, replace output with +0.0f.
178     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
179     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
180     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
181     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
182     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
183     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
184     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
185     vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6);
186     vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7);
187 
188     // Multiply by scale.
189     vf0 = _mm256_mul_ps(vf0, vscale);
190     vf1 = _mm256_mul_ps(vf1, vscale);
191     vf2 = _mm256_mul_ps(vf2, vscale);
192     vf3 = _mm256_mul_ps(vf3, vscale);
193     vf4 = _mm256_mul_ps(vf4, vscale);
194     vf5 = _mm256_mul_ps(vf5, vscale);
195     vf6 = _mm256_mul_ps(vf6, vscale);
196     vf7 = _mm256_mul_ps(vf7, vscale);
197 
198     // Store 64 (8x8) outputs at a time.
199     _mm256_storeu_ps(output, vf0);
200     _mm256_storeu_ps(output + 8, vf1);
201     _mm256_storeu_ps(output + 16, vf2);
202     _mm256_storeu_ps(output + 24, vf3);
203     _mm256_storeu_ps(output + 32, vf4);
204     _mm256_storeu_ps(output + 40, vf5);
205     _mm256_storeu_ps(output + 48, vf6);
206     _mm256_storeu_ps(output + 56, vf7);
207     output += 64;
208   }
209   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
210     // Load 8 inputs at a time.
211     const __m256 vi = _mm256_loadu_ps(input);
212     input += 8;
213 
214     // Subtract maximum input x := i - i_max. This implies x <= 0.
215     const __m256 vx = _mm256_sub_ps(vi, vi_max);
216 
217     // Compute reduced argument elements := round(x / log(2)).
218     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
219 
220     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
221     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
222     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
223 
224     // Subtract the large number back to get final elements := round(x / log(2)).
225     vn = _mm256_sub_ps(vn, vmagic_bias);
226 
227     // Compute reduced argument t := x - elements * log(2).
228     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
229     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
230     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
231 
232     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
233     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
234     vp = _mm256_fmadd_ps(vp, vt, vc3);
235     vp = _mm256_fmadd_ps(vp, vt, vc2);
236     vp = _mm256_fmadd_ps(vp, vt, vc1);
237 
238     // Reconstruct the final f value:
239     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
240     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
241     //     = s + (t * s) * p
242     vt = _mm256_mul_ps(vt, vs);
243     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
244 
245     // For inputs below zero cutoff, replace output with +0.0f.
246     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
247     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
248 
249     // Multiply by scale.
250     vf = _mm256_mul_ps(vf, vscale);
251 
252     // Store 64 (8x8) outputs at a time.
253     _mm256_storeu_ps(output, vf);
254     output += 8;
255   }
256   if (elements != 0) {
257     assert(elements >= 1 * sizeof(float));
258     assert(elements <= 7 * sizeof(float));
259     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
260 
261     // Load up to 7 inputs at a time.
262     const __m256 vi = _mm256_maskload_ps(input, vmask);
263 
264     // Subtract maximum input x := i - i_max. This implies x <= 0.
265     const __m256 vx = _mm256_sub_ps(vi, vi_max);
266 
267     // Compute reduced argument elements := round(x / log(2)).
268     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
269 
270     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
271     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
272     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
273 
274     // Subtract the large number back to get final elements := round(x / log(2)).
275     vn = _mm256_sub_ps(vn, vmagic_bias);
276 
277     // Compute reduced argument t := x - elements * log(2).
278     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
279     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
280     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
281 
282     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
283     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
284     vp = _mm256_fmadd_ps(vp, vt, vc3);
285     vp = _mm256_fmadd_ps(vp, vt, vc2);
286     vp = _mm256_fmadd_ps(vp, vt, vc1);
287 
288     // Reconstruct the final f value:
289     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
290     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
291     //     = s + (t * s) * p
292     vt = _mm256_mul_ps(vt, vs);
293     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
294 
295     // For inputs below zero cutoff, replace output with +0.0f.
296     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
297     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
298 
299     // Multiply by scale.
300     vf = _mm256_mul_ps(vf, vscale);
301 
302     // Store up to 7 outputs at a time.
303     _mm256_maskstore_ps(output, vmask, vf);
304   }
305 }
306