• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleextexp/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleextexp.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleextexp_ukernel__avx2_p5_x32(size_t elements,const float * x,float * y,float scale_value,float scale_exp)20 void xnn_f32_vscaleextexp_ukernel__avx2_p5_x32(
21     size_t elements,
22     const float* x,
23     float* y,
24     float scale_value,
25     float scale_exp)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
30   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
31   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
32 
33   // The smallest elements such that 2**elements is considered non-negligible.
34   // For smaller elements, 2**elements is replaced with zero.
35   const __m256 vmin_exponent = _mm256_set1_ps(-127.0f);
36   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
37 
38   const __m256 vc0 = _mm256_set1_ps(1.0f);
39   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
40   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
41   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
42   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
43   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
44 
45   const __m256 vscalev = _mm256_set1_ps(scale_value);
46   const __m256 vscalee = _mm256_set1_ps(scale_exp);
47 
48   for (; elements >= 32 * sizeof(float); elements -= 32 * sizeof(float)) {
49     // Load 32 (4x8) inputs at a time.
50     const __m256 vx0 = _mm256_loadu_ps(x);
51     const __m256 vx1 = _mm256_loadu_ps(x + 8);
52     const __m256 vx2 = _mm256_loadu_ps(x + 16);
53     const __m256 vx3 = _mm256_loadu_ps(x + 24);
54     x += 32;
55 
56     // Compute reduced argument elements := round(x / log(2)).
57     const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
58     const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
59     const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
60     const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
61 
62     // Compute reduced argument t := x - elements * log(2).
63     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
64     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
65     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
66     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
67     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
68 
69     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
70     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
71     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
72     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
73 
74     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
75     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
76     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
77     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
78     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
79 
80     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
81     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
82     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
83     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
84 
85     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
86     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
87     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
88     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
89 
90     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
91     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
92     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
93     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
94 
95     vp0 = _mm256_fmadd_ps(vp0, vt0, vc0);
96     vp1 = _mm256_fmadd_ps(vp1, vt1, vc0);
97     vp2 = _mm256_fmadd_ps(vp2, vt2, vc0);
98     vp3 = _mm256_fmadd_ps(vp3, vt3, vc0);
99 
100     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where
101     //  - vnX is "exponent"
102     //  - vpX is "mantissa"
103     //
104     // exp2(ae) * av * exp2(be) * bv =
105     //   = exp2(ae + be) * (av * bv)
106     __m256 vf0 = _mm256_mul_ps(vp0, vscalev);
107     __m256 vf1 = _mm256_mul_ps(vp1, vscalev);
108     __m256 vf2 = _mm256_mul_ps(vp2, vscalev);
109     __m256 vf3 = _mm256_mul_ps(vp3, vscalev);
110 
111     __m256 ve0 = _mm256_add_ps(vn0, vscalee);
112     __m256 ve1 = _mm256_add_ps(vn1, vscalee);
113     __m256 ve2 = _mm256_add_ps(vn2, vscalee);
114     __m256 ve3 = _mm256_add_ps(vn3, vscalee);
115 
116     // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
117     // This replacement is done in two steps:
118     // 1. Clamp minimum e at -127.0.
119     // 2. Map e to scale factor 0.0 when e == -127.0
120     ve0 = _mm256_max_ps(ve0, vmin_exponent);
121     ve1 = _mm256_max_ps(ve1, vmin_exponent);
122     ve2 = _mm256_max_ps(ve2, vmin_exponent);
123     ve3 = _mm256_max_ps(ve3, vmin_exponent);
124 
125     // Convert exponents into scale factors:
126     // - s = exp2(e) when e > -127.0
127     // - s = 0.0 when e <= -127.0
128     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23));
129     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23));
130     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23));
131     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23));
132 
133     // Multiply "mantissa" by the scale factor.
134     vf0 = _mm256_mul_ps(vf0, vs0);
135     vf1 = _mm256_mul_ps(vf1, vs1);
136     vf2 = _mm256_mul_ps(vf2, vs2);
137     vf3 = _mm256_mul_ps(vf3, vs3);
138 
139     // Store 32 (4x8) outputs at a time.
140     _mm256_storeu_ps(y, vf0);
141     _mm256_storeu_ps(y + 8, vf1);
142     _mm256_storeu_ps(y + 16, vf2);
143     _mm256_storeu_ps(y + 24, vf3);
144     y += 32;
145   }
146 
147   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
148     // Load 8 inputs at a time.
149     const __m256 vx = _mm256_loadu_ps(x);
150     x += 8;
151 
152     // Compute reduced argument elements := round(x / log(2)).
153     const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
154 
155     // Compute reduced argument t := x - elements * log(2).
156     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
157     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
158     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
159 
160     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
161     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
162     vp = _mm256_fmadd_ps(vp, vt, vc3);
163     vp = _mm256_fmadd_ps(vp, vt, vc2);
164     vp = _mm256_fmadd_ps(vp, vt, vc1);
165     vp = _mm256_fmadd_ps(vp, vt, vc0);
166 
167     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
168     __m256 vf = _mm256_mul_ps(vp, vscalev);
169     __m256 ve = _mm256_add_ps(vn, vscalee);
170 
171     // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
172     ve = _mm256_max_ps(ve, vmin_exponent);
173 
174     // Convert exponents into scale factors.
175     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
176 
177     // Multiply "mantissa" by the scale factor.
178     vf = _mm256_mul_ps(vf, vs);
179 
180     // Store 8 results at a time.
181     _mm256_storeu_ps(y, vf);
182     y += 8;
183   }
184   if XNN_UNLIKELY(elements != 0) {
185     assert(elements >= 1 * sizeof(float));
186     assert(elements <= 7 * sizeof(float));
187     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
188 
189     // Load up to 7 inputs at a time.
190     const __m256 vx = _mm256_maskload_ps(x, vmask);
191 
192     // Compute reduced argument elements := round(x / log(2)).
193     const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
194 
195     // Compute reduced argument t := x - elements * log(2).
196     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
197     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
198     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
199 
200     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
201     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
202     vp = _mm256_fmadd_ps(vp, vt, vc3);
203     vp = _mm256_fmadd_ps(vp, vt, vc2);
204     vp = _mm256_fmadd_ps(vp, vt, vc1);
205     vp = _mm256_fmadd_ps(vp, vt, vc0);
206 
207     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
208     __m256 vf = _mm256_mul_ps(vp, vscalev);
209     __m256 ve = _mm256_add_ps(vn, vscalee);
210 
211     // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
212     ve = _mm256_max_ps(ve, vmin_exponent);
213 
214     // Convert exponents into scale factors.
215     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
216 
217     // Multiply "mantissa" by the scale factor.
218     vf = _mm256_mul_ps(vf, vs);
219 
220     // Store up to 7 inputs at a time.
221     _mm256_maskstore_ps(y, vmask, vf);
222   }
223   _mm256_zeroupper();
224 }
225