• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleextexp/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleextexp.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleextexp_ukernel__avx2_p5_x96(size_t elements,const float * x,float * y,float scale_value,float scale_exp)20 void xnn_f32_vscaleextexp_ukernel__avx2_p5_x96(
21     size_t elements,
22     const float* x,
23     float* y,
24     float scale_value,
25     float scale_exp)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
30   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
31   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
32 
33   // The smallest elements such that 2**elements is considered non-negligible.
34   // For smaller elements, 2**elements is replaced with zero.
35   const __m256 vmin_exponent = _mm256_set1_ps(-127.0f);
36   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
37 
38   const __m256 vc0 = _mm256_set1_ps(1.0f);
39   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
40   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
41   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
42   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
43   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
44 
45   const __m256 vscalev = _mm256_set1_ps(scale_value);
46   const __m256 vscalee = _mm256_set1_ps(scale_exp);
47 
48   for (; elements >= 96 * sizeof(float); elements -= 96 * sizeof(float)) {
49     // Load 96 (12x8) inputs at a time.
50     const __m256 vx0 = _mm256_loadu_ps(x);
51     const __m256 vx1 = _mm256_loadu_ps(x + 8);
52     const __m256 vx2 = _mm256_loadu_ps(x + 16);
53     const __m256 vx3 = _mm256_loadu_ps(x + 24);
54     const __m256 vx4 = _mm256_loadu_ps(x + 32);
55     const __m256 vx5 = _mm256_loadu_ps(x + 40);
56     const __m256 vx6 = _mm256_loadu_ps(x + 48);
57     const __m256 vx7 = _mm256_loadu_ps(x + 56);
58     const __m256 vx8 = _mm256_loadu_ps(x + 64);
59     const __m256 vx9 = _mm256_loadu_ps(x + 72);
60     const __m256 vx10 = _mm256_loadu_ps(x + 80);
61     const __m256 vx11 = _mm256_loadu_ps(x + 88);
62     x += 96;
63 
64     // Compute reduced argument elements := round(x / log(2)).
65     const __m256 vn0 = _mm256_round_ps(_mm256_mul_ps(vx0, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
66     const __m256 vn1 = _mm256_round_ps(_mm256_mul_ps(vx1, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
67     const __m256 vn2 = _mm256_round_ps(_mm256_mul_ps(vx2, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
68     const __m256 vn3 = _mm256_round_ps(_mm256_mul_ps(vx3, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
69     const __m256 vn4 = _mm256_round_ps(_mm256_mul_ps(vx4, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
70     const __m256 vn5 = _mm256_round_ps(_mm256_mul_ps(vx5, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
71     const __m256 vn6 = _mm256_round_ps(_mm256_mul_ps(vx6, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
72     const __m256 vn7 = _mm256_round_ps(_mm256_mul_ps(vx7, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
73     const __m256 vn8 = _mm256_round_ps(_mm256_mul_ps(vx8, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
74     const __m256 vn9 = _mm256_round_ps(_mm256_mul_ps(vx9, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
75     const __m256 vn10 = _mm256_round_ps(_mm256_mul_ps(vx10, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
76     const __m256 vn11 = _mm256_round_ps(_mm256_mul_ps(vx11, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
77 
78     // Compute reduced argument t := x - elements * log(2).
79     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
80     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
81     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
82     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
83     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
84     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
85     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
86     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
87     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
88     __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8);
89     __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9);
90     __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10);
91     __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11);
92 
93     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
94     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
95     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
96     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
97     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
98     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
99     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
100     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
101     vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8);
102     vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9);
103     vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10);
104     vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11);
105 
106     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
107     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
108     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
109     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
110     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
111     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
112     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
113     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
114     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
115     __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
116     __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4);
117     __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4);
118     __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4);
119 
120     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
121     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
122     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
123     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
124     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
125     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
126     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
127     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
128     vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
129     vp9 = _mm256_fmadd_ps(vp9, vt9, vc3);
130     vp10 = _mm256_fmadd_ps(vp10, vt10, vc3);
131     vp11 = _mm256_fmadd_ps(vp11, vt11, vc3);
132 
133     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
134     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
135     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
136     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
137     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
138     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
139     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
140     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
141     vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
142     vp9 = _mm256_fmadd_ps(vp9, vt9, vc2);
143     vp10 = _mm256_fmadd_ps(vp10, vt10, vc2);
144     vp11 = _mm256_fmadd_ps(vp11, vt11, vc2);
145 
146     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
147     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
148     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
149     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
150     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
151     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
152     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
153     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
154     vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
155     vp9 = _mm256_fmadd_ps(vp9, vt9, vc1);
156     vp10 = _mm256_fmadd_ps(vp10, vt10, vc1);
157     vp11 = _mm256_fmadd_ps(vp11, vt11, vc1);
158 
159     vp0 = _mm256_fmadd_ps(vp0, vt0, vc0);
160     vp1 = _mm256_fmadd_ps(vp1, vt1, vc0);
161     vp2 = _mm256_fmadd_ps(vp2, vt2, vc0);
162     vp3 = _mm256_fmadd_ps(vp3, vt3, vc0);
163     vp4 = _mm256_fmadd_ps(vp4, vt4, vc0);
164     vp5 = _mm256_fmadd_ps(vp5, vt5, vc0);
165     vp6 = _mm256_fmadd_ps(vp6, vt6, vc0);
166     vp7 = _mm256_fmadd_ps(vp7, vt7, vc0);
167     vp8 = _mm256_fmadd_ps(vp8, vt8, vc0);
168     vp9 = _mm256_fmadd_ps(vp9, vt9, vc0);
169     vp10 = _mm256_fmadd_ps(vp10, vt10, vc0);
170     vp11 = _mm256_fmadd_ps(vp11, vt11, vc0);
171 
172     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where
173     //  - vnX is "exponent"
174     //  - vpX is "mantissa"
175     //
176     // exp2(ae) * av * exp2(be) * bv =
177     //   = exp2(ae + be) * (av * bv)
178     __m256 vf0 = _mm256_mul_ps(vp0, vscalev);
179     __m256 vf1 = _mm256_mul_ps(vp1, vscalev);
180     __m256 vf2 = _mm256_mul_ps(vp2, vscalev);
181     __m256 vf3 = _mm256_mul_ps(vp3, vscalev);
182     __m256 vf4 = _mm256_mul_ps(vp4, vscalev);
183     __m256 vf5 = _mm256_mul_ps(vp5, vscalev);
184     __m256 vf6 = _mm256_mul_ps(vp6, vscalev);
185     __m256 vf7 = _mm256_mul_ps(vp7, vscalev);
186     __m256 vf8 = _mm256_mul_ps(vp8, vscalev);
187     __m256 vf9 = _mm256_mul_ps(vp9, vscalev);
188     __m256 vf10 = _mm256_mul_ps(vp10, vscalev);
189     __m256 vf11 = _mm256_mul_ps(vp11, vscalev);
190 
191     __m256 ve0 = _mm256_add_ps(vn0, vscalee);
192     __m256 ve1 = _mm256_add_ps(vn1, vscalee);
193     __m256 ve2 = _mm256_add_ps(vn2, vscalee);
194     __m256 ve3 = _mm256_add_ps(vn3, vscalee);
195     __m256 ve4 = _mm256_add_ps(vn4, vscalee);
196     __m256 ve5 = _mm256_add_ps(vn5, vscalee);
197     __m256 ve6 = _mm256_add_ps(vn6, vscalee);
198     __m256 ve7 = _mm256_add_ps(vn7, vscalee);
199     __m256 ve8 = _mm256_add_ps(vn8, vscalee);
200     __m256 ve9 = _mm256_add_ps(vn9, vscalee);
201     __m256 ve10 = _mm256_add_ps(vn10, vscalee);
202     __m256 ve11 = _mm256_add_ps(vn11, vscalee);
203 
204     // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
205     // This replacement is done in two steps:
206     // 1. Clamp minimum e at -127.0.
207     // 2. Map e to scale factor 0.0 when e == -127.0
208     ve0 = _mm256_max_ps(ve0, vmin_exponent);
209     ve1 = _mm256_max_ps(ve1, vmin_exponent);
210     ve2 = _mm256_max_ps(ve2, vmin_exponent);
211     ve3 = _mm256_max_ps(ve3, vmin_exponent);
212     ve4 = _mm256_max_ps(ve4, vmin_exponent);
213     ve5 = _mm256_max_ps(ve5, vmin_exponent);
214     ve6 = _mm256_max_ps(ve6, vmin_exponent);
215     ve7 = _mm256_max_ps(ve7, vmin_exponent);
216     ve8 = _mm256_max_ps(ve8, vmin_exponent);
217     ve9 = _mm256_max_ps(ve9, vmin_exponent);
218     ve10 = _mm256_max_ps(ve10, vmin_exponent);
219     ve11 = _mm256_max_ps(ve11, vmin_exponent);
220 
221     // Convert exponents into scale factors:
222     // - s = exp2(e) when e > -127.0
223     // - s = 0.0 when e <= -127.0
224     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve0, vmagic_bias)), 23));
225     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve1, vmagic_bias)), 23));
226     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve2, vmagic_bias)), 23));
227     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve3, vmagic_bias)), 23));
228     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve4, vmagic_bias)), 23));
229     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve5, vmagic_bias)), 23));
230     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve6, vmagic_bias)), 23));
231     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve7, vmagic_bias)), 23));
232     const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve8, vmagic_bias)), 23));
233     const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve9, vmagic_bias)), 23));
234     const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve10, vmagic_bias)), 23));
235     const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve11, vmagic_bias)), 23));
236 
237     // Multiply "mantissa" by the scale factor.
238     vf0 = _mm256_mul_ps(vf0, vs0);
239     vf1 = _mm256_mul_ps(vf1, vs1);
240     vf2 = _mm256_mul_ps(vf2, vs2);
241     vf3 = _mm256_mul_ps(vf3, vs3);
242     vf4 = _mm256_mul_ps(vf4, vs4);
243     vf5 = _mm256_mul_ps(vf5, vs5);
244     vf6 = _mm256_mul_ps(vf6, vs6);
245     vf7 = _mm256_mul_ps(vf7, vs7);
246     vf8 = _mm256_mul_ps(vf8, vs8);
247     vf9 = _mm256_mul_ps(vf9, vs9);
248     vf10 = _mm256_mul_ps(vf10, vs10);
249     vf11 = _mm256_mul_ps(vf11, vs11);
250 
251     // Store 96 (12x8) outputs at a time.
252     _mm256_storeu_ps(y, vf0);
253     _mm256_storeu_ps(y + 8, vf1);
254     _mm256_storeu_ps(y + 16, vf2);
255     _mm256_storeu_ps(y + 24, vf3);
256     _mm256_storeu_ps(y + 32, vf4);
257     _mm256_storeu_ps(y + 40, vf5);
258     _mm256_storeu_ps(y + 48, vf6);
259     _mm256_storeu_ps(y + 56, vf7);
260     _mm256_storeu_ps(y + 64, vf8);
261     _mm256_storeu_ps(y + 72, vf9);
262     _mm256_storeu_ps(y + 80, vf10);
263     _mm256_storeu_ps(y + 88, vf11);
264     y += 96;
265   }
266 
267   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
268     // Load 8 inputs at a time.
269     const __m256 vx = _mm256_loadu_ps(x);
270     x += 8;
271 
272     // Compute reduced argument elements := round(x / log(2)).
273     const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
274 
275     // Compute reduced argument t := x - elements * log(2).
276     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
277     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
278     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
279 
280     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
281     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
282     vp = _mm256_fmadd_ps(vp, vt, vc3);
283     vp = _mm256_fmadd_ps(vp, vt, vc2);
284     vp = _mm256_fmadd_ps(vp, vt, vc1);
285     vp = _mm256_fmadd_ps(vp, vt, vc0);
286 
287     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
288     __m256 vf = _mm256_mul_ps(vp, vscalev);
289     __m256 ve = _mm256_add_ps(vn, vscalee);
290 
291     // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
292     ve = _mm256_max_ps(ve, vmin_exponent);
293 
294     // Convert exponents into scale factors.
295     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
296 
297     // Multiply "mantissa" by the scale factor.
298     vf = _mm256_mul_ps(vf, vs);
299 
300     // Store 8 results at a time.
301     _mm256_storeu_ps(y, vf);
302     y += 8;
303   }
304   if XNN_UNLIKELY(elements != 0) {
305     assert(elements >= 1 * sizeof(float));
306     assert(elements <= 7 * sizeof(float));
307     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
308 
309     // Load up to 7 inputs at a time.
310     const __m256 vx = _mm256_maskload_ps(x, vmask);
311 
312     // Compute reduced argument elements := round(x / log(2)).
313     const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
314 
315     // Compute reduced argument t := x - elements * log(2).
316     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
317     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
318     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
319 
320     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
321     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
322     vp = _mm256_fmadd_ps(vp, vt, vc3);
323     vp = _mm256_fmadd_ps(vp, vt, vc2);
324     vp = _mm256_fmadd_ps(vp, vt, vc1);
325     vp = _mm256_fmadd_ps(vp, vt, vc0);
326 
327     // Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
328     __m256 vf = _mm256_mul_ps(vp, vscalev);
329     __m256 ve = _mm256_add_ps(vn, vscalee);
330 
331     // For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
332     ve = _mm256_max_ps(ve, vmin_exponent);
333 
334     // Convert exponents into scale factors.
335     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
336 
337     // Multiply "mantissa" by the scale factor.
338     vf = _mm256_mul_ps(vf, vs);
339 
340     // Store up to 7 inputs at a time.
341     _mm256_maskstore_ps(y, vmask, vf);
342   }
343   _mm256_zeroupper();
344 }
345