1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <assert.h>
7 #include <math.h>
8
9 #include <immintrin.h>
10
11 #include <xnnpack/math-stubs.h>
12
13
xnn_math_f32_exp__avx2_rr2_p5(size_t n,const float * input,float * output)14 void xnn_math_f32_exp__avx2_rr2_p5(
15 size_t n,
16 const float* input,
17 float* output)
18 {
19 assert(n % (8 * sizeof(float)) == 0);
20
21 const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p+23f);
22 // The smallest x for which expf(x) is non-zero.
23 const __m256 vzero_cutoff = _mm256_set1_ps(-0x1.9FE368p+6f);
24 // The largest x for which expf(x) is finite.
25 const __m256 vinf_cutoff = _mm256_set1_ps(0x1.62E42Ep+6f);
26 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
27 const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
28 const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
29 const __m256 vplus_inf = _mm256_set1_ps(INFINITY);
30
31 const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
32 const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
33 const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
34 const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
35 const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
36
37 const __m256i vmin_exponent = _mm256_set1_epi32(0xC1000000);
38 const __m256i vmax_exponent = _mm256_set1_epi32(0x3F800000);
39 const __m256i vdefault_exponent = vmax_exponent;
40
41 for (; n != 0; n -= 8 * sizeof(float)) {
42 const __m256 vx = _mm256_loadu_ps(input);
43
44 // Compute reduced argument n := round(x / log(2)).
45 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
46 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
47 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
48 // inputs outside of [-103.97207, 88.72283] underflow or overflow expf(x) anyway. We fixup the result for such
49 // inputs at the very end of the algorithm.
50 __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
51
52 // Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n
53 // for inputs which don't cause overflow, i.e. -103.97207 <= x <= 88.72283, and -150 <= n <= 128 accordingly.
54 // We need to use two numbers rather than one because a normalized single-precision exponent must be in [-127, 126]
55 // range, which is insufficient to cover [-150, 128] range of n.
56 // - When n is within [-127, 126], sn == 2**n and so == 1.0.
57 // - When n < -127, sn == 2**(-127) and so == 2**(n + 127).
58 // - When n > 126, sn == 2**126 and so == 2**(n - 126).
59 __m256i veo = _mm256_slli_epi32(_mm256_castps_si256(vn), 23);
60 __m256i ven = _mm256_max_epi32(veo, vmin_exponent);
61 ven = _mm256_min_epi32(ven, vmax_exponent);
62 veo = _mm256_sub_epi32(veo, ven);
63 const __m256 vsn = _mm256_castsi256_ps(_mm256_add_epi32(ven, vdefault_exponent));
64 const __m256 vso = _mm256_castsi256_ps(_mm256_add_epi32(veo, vdefault_exponent));
65
66 // Subtract the large number back to get final n := round(x / log(2)).
67 vn = _mm256_sub_ps(vn, vmagic_bias);
68
69 // Compute reduced argument t := x - n * log(2).
70 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
71 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
72 vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
73
74 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
75 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
76 vp = _mm256_fmadd_ps(vp, vt, vc3);
77 vp = _mm256_fmadd_ps(vp, vt, vc2);
78 vp = _mm256_fmadd_ps(vp, vt, vc1);
79
80 // Reconstruct the final f value:
81 // f = so * sn * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
82 // = sn * (so + (t * so) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))))
83 // = sn * (so + (t * so) * p)
84 vt = _mm256_mul_ps(vt, vso);
85 __m256 vf = _mm256_mul_ps(vsn, _mm256_fmadd_ps(vt, vp, vso));
86
87 // For inputs below zero cutoff, replace output with +0.0f.
88 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
89 vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vzero_cutoff, _CMP_LT_OS), vf);
90 // For inputs above inf cutoff, replace output with +inf.
91 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
92 vf = _mm256_blendv_ps(vf, vplus_inf, _mm256_cmp_ps(vx, vinf_cutoff, _CMP_GT_OS));
93 _mm256_storeu_ps(output, vf);
94
95 input += 8;
96 output += 8;
97 }
98 }
99