• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 
9 #include <xnnpack/common.h>
10 #include <xnnpack/math-stubs.h>
11 
12 #include <fp16/bitcasts.h>
13 
14 
xnn_math_f32_expminus__scalar_rr2_p5(size_t n,const float * input,float * output)15 void xnn_math_f32_expminus__scalar_rr2_p5(
16     size_t n,
17     const float* input,
18     float* output)
19 {
20   assert(n % sizeof(float) == 0);
21 
22   // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22.
23   const float vmagic_bias = 0x1.8000FEp23f;
24   const float vlog2e = 0x1.715476p+0f;
25   // Last 7 bits are zeroes
26   const float vminus_ln2_hi = -0x1.62E400p-1f;
27   const float vminus_ln2_lo = -0x1.7F7D1Cp-20f;
28   // Coefficient of polynomial approximation
29   //   exp(t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
30   // on [-log(2)/2, log(2)/2]
31   const float vc5 = 0x1.0F9F9Cp-7f;
32   const float vc4 = 0x1.573A1Ap-5f;
33   const float vc3 = 0x1.555A80p-3f;
34   const float vc2 = 0x1.FFFDC6p-2f;
35   const float vc1 = 0x1.FFFFF6p-1f;
36   // The smallest x for which expf(x) is normalized.
37   const float vdenorm_cutoff = -0x1.5D589Ep6f;
38 
39   for (; n != 0; n -= sizeof(float)) {
40     const float vx = *input++;
41 
42     // Compute reduced argument n := round(x / log(2)).
43     // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result
44     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
45     // certain bounds (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because
46     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very
47     // end of the algorithm.
48     float vn = vx * vlog2e + vmagic_bias;
49 
50     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
51     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
52     const float vs = fp32_from_bits(fp32_to_bits(vn) << 23);
53 
54     // Subtract the large number back to get final n := round(x / log(2)) as a floating-point number.
55     vn -= vmagic_bias;
56 
57     // Compute reduced argument t := x - n * log(2).
58     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
59     float vt = vn * vminus_ln2_hi + vx;
60     vt = vn * vminus_ln2_lo + vt;
61 
62     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]:
63     //   P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p
64     float vp = vc5 * vt + vc4;
65     vp = vp * vt + vc3;
66     vp = vp * vt + vc2;
67     vp = vp * vt + vc1;
68 
69     // Reconstruct the exp(x) value:
70     //   exp(x) = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
71     //          = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
72     //          = s + (t * s) * p
73     vt *= vs;
74     float vf = vt * vp + vs;
75 
76     // For inputs below denormal cutoff, replace output with +0.0f.
77     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
78     if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
79       vf = 0.0f;
80     }
81 
82     *output++ = vf;
83   }
84 }
85