1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <assert.h>
7 #include <stddef.h>
8 #include <stdint.h>
9
10 #include <arm_neon.h>
11
12 #include <xnnpack/math-stubs.h>
13
14
xnn_math_f32_roundne__neon_addsub(size_t n,const float * input,float * output)15 void xnn_math_f32_roundne__neon_addsub(
16 size_t n,
17 const float* input,
18 float* output)
19 {
20 assert(n % (4 * sizeof(float)) == 0);
21
22 // Addition of this number to a floating-point number x cause rounding of the result to an integer. Then this magic
23 // number is subtracted back from the result to get original x rounded to integer. This trick works only for
24 // 0 <= x < 2**24, but all numbers in 2**23 <= x < 2**24 range are integers, so we can further restrict it to
25 // 0 <= x < 2**23. Then the upper bound of the validity interval is conveniently the same as the magic number.
26 const float32x4_t vmagic_number = vmovq_n_f32(0x1.000000p+23f);
27 // Mask for the sign bit of a floating-point number.
28 const uint32x4_t vsign_mask = vmovq_n_u32(UINT32_C(0x80000000));
29
30 for (; n != 0; n -= 4 * sizeof(float)) {
31 const float32x4_t vx = vld1q_f32(input); input += 4;
32
33 // The rounding trick works only for x >= 0, so we compute absolute value of x, round it, and restore the sign in
34 // the end. This method works for round-to-nearest-even because it is an odd function.
35 const float32x4_t vabsx = vabsq_f32(vx);
36 // Compute bitmask for the bits we want to copy from the rounded abs(x). Other bits will be copied from x.
37 // If abs(x) >= 2**23, we want all bits from x.
38 // If abs(x) < 2**23 or x is NaN, we want all but the sign bit from the rounded abs(x) and the sign bit from x.
39 // Note: we do vcaltq_f32(vmagic_number, vx) instead of vcltq_f32(vmagic_number, vabsx) to reduce dependency chain.
40 const uint32x4_t vrndmask = vorrq_u32(vcaltq_f32(vmagic_number, vx), vsign_mask);
41
42 // Addition-subtraction trick with the magic number to cause rounding to integer for abs(x).
43 // Note: the result is valid only for 0 <= abs(x) < 2**23.
44 // Note: addition-subtraction implicitly converts SNaN inputs to QNaNs.
45 const float32x4_t vrndabsx = vsubq_f32(vaddq_f32(vabsx, vmagic_number), vmagic_number);
46
47 // Combine abs(x) rounded via addition-subtraction trick and the input x value.
48 // For abs(x) < 2**23, the result is abs(x) rounded via addition-subtraction trick with the sign of x.
49 // For NaN inputs, the result is x converted to QNaN as a side-effect of addition-subtraction.
50 // For abs(x) >= 2**23, the result is x itself.
51 const float32x4_t vy = vbslq_f32(vrndmask, vx, vrndabsx);
52
53 vst1q_f32(output, vy); output += 4;
54 }
55 }
56