• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 
9 #include <immintrin.h>
10 
11 #include <xnnpack/common.h>
12 #include <xnnpack/math-stubs.h>
13 
14 
15 // Table of exp2(k / 64) values decremented (as integer) by (k << 17), k = 0..63
16 extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64];
17 
xnn_math_f32_sigmoid__avx2_rr1_lut64_p2_gather_nr2fma(size_t n,const float * input,float * output)18 void xnn_math_f32_sigmoid__avx2_rr1_lut64_p2_gather_nr2fma(
19     size_t n,
20     const float* input,
21     float* output)
22 {
23   assert(n % (8 * sizeof(float)) == 0);
24 
25   // Floating-point mask with only the sign bit set
26   const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
27   // Large number such that ulp(magic bias) == exp2(-6)
28   const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p17f);
29   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p0f);
30   // Mask for the lowest 6 bits
31   const __m256 vindex_mask = _mm256_castsi256_ps(_mm256_set1_epi32(INT32_C(0x3F)));
32   const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
33   // Coefficient of polynomial approximation of exp(t) ~ 1 + t * (1 + t * c2) on [-log(2)/128, log(2)/128]
34   const __m256 vc2 = _mm256_set1_ps(0x1.FFFF0Ap-2f);
35   const __m256 vone = _mm256_set1_ps(1.0f);
36   // The smallest x for which sigmoidf(x) is normalized.
37   // This number is also the smallest x for which expf(x) is normalized.
38   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
39 
40   for (; n != 0; n -= 8 * sizeof(float)) {
41     const __m256 vx = _mm256_loadu_ps(input);
42 
43     // General structure of the algorithm:
44     //
45     //           / exp(x) / (1 + exp(x)) if x <= 0
46     //   f[x] :=
47     //           \ 1 - f[-x] if x >= 0
48     //
49     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0.
50     const __m256 vz = _mm256_or_ps(vx, vsign_mask);
51 
52     // Compute reduced argument n := round(z / log(2), 6).
53     // We do it by adding a large number (magic bias), which cause rounding of the result to 6 fractional bits, then
54     // subtracing the large number back. The addition is combined with multiplication by log2e into a single FMA
55     // instruction. The trick with adding large number is valid only within certain bounds (|z / log(2)| <= 2**16, i.e.
56     // |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x outside of [-87.336544, 17.328678]
57     // (i.e. z outsize [87.336544, 0]) underflow or saturate sigmoidf(x). We fixup the result  for such inputs at the
58     // very end of the algorithm.
59     __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
60 
61     // Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(z) is normalized,
62     // i.e. -87.33642 <= z <= 0. As n has 6 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s
63     // in two steps:
64     // 1. Fetch 2**frac(n) from the table using the 6 low bits of n, as integer. Note that the fetched values are in
65     //    the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
66     // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
67     //    number, because for -87.33642 <= z <= 0 (inputs for which sigmoidf(z) is normalized) we have
68     //    -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126.
69     //
70     // Shift bits 6:14 into 23:31 (position of floating-point exponent).
71     __m256i ve = _mm256_slli_epi32(_mm256_castps_si256(vn), 17);
72 
73     // Use bits 0:6 of n, as integer, as an index for table lookup of l := 2**frac(n).
74     const __m256i vidx = _mm256_castps_si256(_mm256_and_ps(vn, vindex_mask));
75     const __m256i vl = _mm256_i32gather_epi32((const int*) xnn_table_exp2minus_k_over_64, vidx, sizeof(float));
76     // Adjust exponent of the value l fetched from the table to get the final s value.
77     const __m256 vs = _mm256_castsi256_ps(_mm256_add_epi32(vl, ve));
78 
79     // Subtract the large number back to get the final n := round(z / log(2), 6) as a floating-point number.
80     vn = _mm256_sub_ps(vn, vmagic_bias);
81 
82     // Compute reduced argument t := z - n * log(2).
83     const __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
84 
85     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
86     //   P(t) = 1 + t * (1 + t * c2) = 1 + (t + t * (t * c2)) = 1 + p
87     __m256 vp = _mm256_mul_ps(vt, vc2);
88     vp = _mm256_fmadd_ps(vt, vp, vt);
89 
90     // Reconstruct the exp(z) value:
91     //   e = s * (1 + t * (1 + t * c2))
92     //     = s * (1 + p)
93     //     = s + s * p
94     const __m256 vy = _mm256_fmadd_ps(vs, vp, vs);
95 
96     // Denominator of the sigmoid fraction: 1.0 + exp(z)
97     const __m256 vd = _mm256_add_ps(vy, vone);
98 
99     // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
100     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
101     // Thus the reciprocal of the denominator never overflows.
102     __m256 vr = _mm256_rcp_ps(vd);
103     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
104     vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
105 
106     // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
107     __m256 vf = _mm256_mul_ps(vy, vr);
108 
109     // For inputs below denormal cutoff, replace output with +0.0f.
110     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
111     vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
112 
113     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
114     vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
115 
116     _mm256_storeu_ps(output, vf);
117 
118     input += 8;
119     output += 8;
120   }
121 }
122