• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 
9 #include <immintrin.h>
10 
11 #include <xnnpack/math-stubs.h>
12 
13 
xnn_math_f32_sigmoid__avx512f_rr1_lut16_p3_perm_scalef_nr1fma(size_t n,const float * input,float * output)14 void xnn_math_f32_sigmoid__avx512f_rr1_lut16_p3_perm_scalef_nr1fma(
15     size_t n,
16     const float* input,
17     float* output)
18 {
19   assert(n % (16 * sizeof(float)) == 0);
20 
21   // Floating-point mask with only the sign bit set
22   const __m512i vsign_mask = _mm512_set1_epi32(0x80000000);
23   // Large number such that ulp(magic bias) == exp2(-4)
24   const __m512 vmagic_bias = _mm512_set1_ps(0x1.800000p19f);
25   const __m512 vlog2e = _mm512_set1_ps(0x1.715476p0f);
26   // Table of exp2(k / 16) values, k = 0..15
27   const __m512 vtable = _mm512_set_ps(
28     0x1.EA4AFAp+0f, 0x1.D5818Ep+0f, 0x1.C199BEp+0f, 0x1.AE89FAp+0f,
29     0x1.9C4918p+0f, 0x1.8ACE54p+0f, 0x1.7A1148p+0f, 0x1.6A09E6p+0f,
30     0x1.5AB07Ep+0f, 0x1.4BFDAEp+0f, 0x1.3DEA64p+0f, 0x1.306FE0p+0f,
31     0x1.2387A6p+0f, 0x1.172B84p+0f, 0x1.0B5586p+0f, 0x1.000000p+0f);
32   const __m512 vminus_ln2 = _mm512_set1_ps(-0x1.62E43p-1f);
33   // Coefficient of polynomial approximation of
34   // exp(t) ~ 1 + t * (1 + t * (c2 + t * c3)) on [-log(2)/32, log(2)/32]
35   const __m512 vc3 = _mm512_set1_ps(0x1.55559Ap-3f);
36   const __m512 vc2 = _mm512_set1_ps(0x1.00021Ep-1f);
37   const __m512 vone = _mm512_set1_ps(1.0f);
38 
39   for (; n != 0; n -= 16 * sizeof(float)) {
40     const __m512 vx = _mm512_loadu_ps(input);
41 
42     // General structure of the algorithm:
43     //
44     //           / exp(x) / (1 + exp(x)) if x <= 0
45     //   f[x] :=
46     //           \ 1 - f[-x] if x >= 0
47     //
48     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0.
49     const __m512 vz = _mm512_castsi512_ps(_mm512_or_epi32(_mm512_castps_si512(vx), vsign_mask));
50 
51     // Compute reduced argument n := round(z / log(2), 4).
52     // We do it by adding a large number (magic bias), which cause rounding of the result to 4 fractional bits, then
53     // subtracing the large number back. The addition is combined with multiplication by log2e into a single FMA
54     // instruction. The trick with adding large number is valid only within certain bounds (|z / log(2)| <= 2**18,
55     // i.e. |z| <= 0x1.62E43p+17 = 181704.375), but that is acceptable, because inputs x outside of
56     // [-87.336544, 17.328678] (i.e. z outsize [87.336544, 0]) underflow or saturate sigmoidf(x). We fixup the result
57     // for such inputs at the very end of the algorithm.
58     __m512 vn = _mm512_fmadd_ps(vz, vlog2e, vmagic_bias);
59 
60     // Use the low 4 bits of n (as integer) for table lookup.
61     const __m512 vl = _mm512_permutexvar_ps(_mm512_castps_si512(vn), vtable);
62 
63     // Subtract the large number back to get the final n := round(z / log(2), 4) as a floating-point number.
64     vn = _mm512_sub_ps(vn, vmagic_bias);
65 
66     // Compute reduced argument t := z - n * log(2).
67     __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2, vz);
68 
69     // Compute degree-3 polynomial approximation for exp(t) on [-log(2)/32, log(2)/32].
70     //   P(t) = 1 + t * (1 + t * (c2 + t * c3))
71     //   p = l * P(t)
72     //     = l + l * (t + t * (t * (c2 + t * c3)))
73     __m512 vp = _mm512_fmadd_ps(vt, vc3, vc2);
74     vp = _mm512_mul_ps(vp, vt);
75     vp = _mm512_fmadd_ps(vt, vp, vt);
76     vp = _mm512_fmadd_ps(vl, vp, vl);
77 
78     // Reconstruct the exp(z) value: e = exp2(floor(n)) * p.
79     const __m512 ve = _mm512_scalef_ps(vp, vn);
80 
81     // Denominator of the sigmoid fraction: 1.0 + exp(z)
82     const __m512 vd = _mm512_add_ps(ve, vone);
83 
84     // Use Newton-Raphson method (1 iteration) to compute reciprocal of denominator.
85     // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
86     // Thus the reciprocal of the denominator never overflows.
87     __m512 vr = _mm512_rcp14_ps(vd);
88     vr = _mm512_fmadd_ps(_mm512_fnmadd_ps(vr, vd, vone), vr, vr);
89 
90     // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
91     __m512 vf = _mm512_mul_ps(ve, vr);
92 
93     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
94     vf = _mm512_mask_sub_ps(vf, _mm512_testn_epi32_mask(_mm512_castps_si512(vx), vsign_mask), vone, vf);
95 
96     _mm512_storeu_ps(output, vf);
97 
98     input += 16;
99     output += 16;
100   }
101 }
102