1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <assert.h>
7 #include <stddef.h>
8
9 #include <emmintrin.h>
10
11 #include <xnnpack/common.h>
12 #include <xnnpack/math-stubs.h>
13
14
15 // Table of exp2(k / 64) values decremented (as integer) by (k << 17), k = 0..63
16 extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_64[64];
17
xnn_math_f32_sigmoid__sse2_rr2_lut64_p2_nr1(size_t n,const float * input,float * output)18 void xnn_math_f32_sigmoid__sse2_rr2_lut64_p2_nr1(
19 size_t n,
20 const float* input,
21 float* output)
22 {
23 assert(n % (4 * sizeof(float)) == 0);
24
25 // Floating-point mask with only the sign bit set
26 const __m128 vsign_mask = _mm_set1_ps(-0.0f);
27 // Large number such that ulp(magic bias) == exp2(-6)
28 const __m128 vmagic_bias = _mm_set1_ps(0x1.800000p17f);
29 const __m128 vlog2e = _mm_set1_ps(0x1.715476p0f);
30 // Mask for the lowest 6 bits
31 const __m128i vindex_mask = _mm_set1_epi32(INT32_C(0x3F));
32 // Last 13 bits are zeroes
33 const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.630000p-1f);
34 const __m128 vminus_ln2_lo = _mm_set1_ps(0x1.BD0106p-13f);
35 // Coefficient of polynomial approximation of exp(t) ~ 1 + t * (1 + t * c2) on [-log(2)/128, log(2)/128]
36 const __m128 vc2 = _mm_set1_ps(0x1.FFFF0Ap-2f);
37 const __m128 vone = _mm_set1_ps(1.0f);
38 const __m128 vtwo = _mm_set1_ps(2.0f);
39 // The smallest x for which sigmoidf(x) is normalized.
40 // This number is also the smallest x for which expf(x) is normalized.
41 const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep+6f);
42
43 for (; n != 0; n -= 4 * sizeof(float)) {
44 const __m128 vx = _mm_load_ps(input);
45 input += 4;
46
47 // General structure of the algorithm:
48 //
49 // / exp(x) / (1 + exp(x)) if x <= 0
50 // f[x] :=
51 // \ 1 - f[-x] if x >= 0
52 //
53 // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x), then replace result with 1 - f[z] if x >= 0.
54 const __m128 vz = _mm_or_ps(vx, vsign_mask);
55
56 // Compute reduced argument n := round(z / log(2), 6).
57 // We do it by adding a large number (magic bias), which cause rounding of the result to 6 fractional bits, then
58 // subtracing the large number back. The trick with adding large number is valid only within certain bounds
59 // (|z / log(2)| <= 2**16, i.e. |z| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs x
60 // outside of [-87.336544, 17.328678] (i.e. z outsize [87.336544, 0]) underflow or saturate sigmoidf(x). We fixup
61 // the result for such inputs at the very end of the algorithm.
62 __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias);
63
64 // Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(z) is normalized,
65 // i.e. -87.33642 <= z <= 0. As n has 6 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s
66 // in two steps:
67 // 1. Fetch 2**frac(n) from the table using the 6 low bits of n, as integer. Note that the fetched values are in
68 // the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
69 // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
70 // number, because for -87.33642 <= z <= 0 (inputs for which sigmoidf(z) is normalized) we have
71 // -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126.
72 //
73 // Shift bits 6:14 into 23:31 (position of floating-point exponent).
74 const __m128i ve = _mm_slli_epi32(_mm_castps_si128(vn), 17);
75
76 // Use bits 0:6 of n, as integer, as an index for table lookup of l := 2**frac(n).
77 const __m128i vidx = _mm_slli_epi32(_mm_and_si128(_mm_castps_si128(vn), vindex_mask), 2);
78 #if XNN_ARCH_X86_64
79 const uint64_t vidx_lo = (uint64_t) _mm_cvtsi128_si64(vidx);
80 const uint64_t vidx_hi = (uint64_t) _mm_cvtsi128_si64(_mm_unpackhi_epi64(vidx, vidx));
81 const __m128i vl0 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) vidx_lo)));
82 const __m128i vl2 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) vidx_hi)));
83 const __m128i vl1 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) (vidx_lo >> 32))));
84 const __m128i vl3 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + (uint32_t) (vidx_hi >> 32))));
85 #else
86 const uint32_t vidx0 = (uint32_t) _mm_cvtsi128_si32(vidx);
87 const uint32_t vidx1 = (uint32_t) _mm_extract_epi16(vidx, 2);
88 const uint32_t vidx2 = (uint32_t) _mm_extract_epi16(vidx, 4);
89 const uint32_t vidx3 = (uint32_t) _mm_extract_epi16(vidx, 6);
90 const __m128i vl0 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + vidx0)));
91 const __m128i vl2 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + vidx2)));
92 const __m128i vl1 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + vidx1)));
93 const __m128i vl3 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2minus_k_over_64 + vidx3)));
94 #endif
95 const __m128i vl = _mm_unpacklo_epi64(_mm_unpacklo_epi32(vl0, vl1), _mm_unpacklo_epi32(vl2, vl3));
96 // Adjust exponent of the value l fetched from the table to get the final s value.
97 const __m128 vs = _mm_castsi128_ps(_mm_add_epi32(vl, ve));
98
99 // Subtract the large number back to get the final n := round(z / log(2), 6) as a floating-point number.
100 vn = _mm_sub_ps(vn, vmagic_bias);
101
102 // Compute reduced argument t := z - n * log(2).
103 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
104 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz);
105 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
106
107 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
108 // P(t) = 1 + t * (1 + t * c2) = 1 + (t + t * (t * c2)) = 1 + p
109 __m128 vp = _mm_mul_ps(vt, vc2);
110 vp = _mm_add_ps(vt, _mm_mul_ps(vp, vt));
111
112 // Reconstruct the exp(z) value:
113 // e = s * (1 + t * (1 + t * c2))
114 // = s * (1 + p)
115 // = s + s * p
116 const __m128 vy = _mm_add_ps(vs, _mm_mul_ps(vs, vp));
117
118 // Denominator of the sigmoid fraction: 1.0 + exp(z)
119 const __m128 vd = _mm_add_ps(vy, vone);
120
121 // Use Newton-Raphson method (1 iteration) to compute reciprocal of denominator.
122 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
123 // Thus the reciprocal of the denominator never overflows.
124 __m128 vr = _mm_rcp_ps(vd);
125 vr = _mm_mul_ps(vr, _mm_sub_ps(vtwo, _mm_mul_ps(vr, vd)));
126
127 // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
128 __m128 vf = _mm_mul_ps(vy, vr);
129
130 // For inputs below denormal cutoff, replace output with +0.0f.
131 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
132 vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf);
133
134 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
135 const __m128 vm = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx)));
136 vf = _mm_or_ps(_mm_and_ps(vm, vf), _mm_andnot_ps(vm, _mm_sub_ps(vone, vf)));
137
138 _mm_store_ps(output, vf);
139 output += 4;
140 }
141 }
142