1 // Auto-generated file. Do not edit!
2 // Template: src/qs8-gemm/MRx4c8-sse.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <tmmintrin.h>
13
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16
17
xnn_qs8_gemm_minmax_ukernel_1x4c8__ssse3_ld64(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_qs8_gemm_minmax_ukernel_1x4c8__ssse3_ld64(
19 size_t mr,
20 size_t nc,
21 size_t kc,
22 const int8_t* restrict a,
23 size_t a_stride,
24 const void* restrict w,
25 int8_t* restrict c,
26 size_t cm_stride,
27 size_t cn_stride,
28 const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN
29 {
30 assert(mr != 0);
31 assert(mr <= 1);
32 assert(nc != 0);
33 assert(kc != 0);
34 assert(kc % sizeof(int8_t) == 0);
35 assert(a != NULL);
36 assert(w != NULL);
37 assert(c != NULL);
38
39 kc = round_up_po2(kc, 8);
40 const int8_t* a0 = a;
41 int8_t* c0 = c;
42
43 do {
44 __m128i vacc0x0 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[0]);
45 __m128i vacc0x1 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[1]);
46 __m128i vacc0x2 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[2]);
47 __m128i vacc0x3 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[3]);
48 w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t));
49
50 size_t k = 0;
51 while (k < kc) {
52 const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
53 const __m128i vxa0 = _mm_unpacklo_epi8(va0, _mm_cmpgt_epi8(_mm_setzero_si128(), va0));
54 a0 += 8;
55
56 const __m128i vb0 = _mm_loadl_epi64((const __m128i*) w);
57 const __m128i vxb0 = _mm_unpacklo_epi8(vb0, _mm_cmpgt_epi8(_mm_setzero_si128(), vb0));
58
59 vacc0x0 = _mm_add_epi32(vacc0x0, _mm_madd_epi16(vxa0, vxb0));
60 const __m128i vb1 = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + 8 * sizeof(int8_t)));
61 const __m128i vxb1 = _mm_unpacklo_epi8(vb1, _mm_cmpgt_epi8(_mm_setzero_si128(), vb1));
62
63 vacc0x1 = _mm_add_epi32(vacc0x1, _mm_madd_epi16(vxa0, vxb1));
64 const __m128i vb2 = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + 16 * sizeof(int8_t)));
65 const __m128i vxb2 = _mm_unpacklo_epi8(vb2, _mm_cmpgt_epi8(_mm_setzero_si128(), vb2));
66
67 vacc0x2 = _mm_add_epi32(vacc0x2, _mm_madd_epi16(vxa0, vxb2));
68 const __m128i vb3 = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + 24 * sizeof(int8_t)));
69 const __m128i vxb3 = _mm_unpacklo_epi8(vb3, _mm_cmpgt_epi8(_mm_setzero_si128(), vb3));
70
71 vacc0x3 = _mm_add_epi32(vacc0x3, _mm_madd_epi16(vxa0, vxb3));
72
73 w = (const void*) ((uintptr_t) w + 32 * sizeof(int8_t));
74 k += 8 * sizeof(int8_t);
75 }
76
77 const __m128i vacc0x01 = _mm_hadd_epi32(vacc0x0, vacc0x1);
78 const __m128i vacc0x23 = _mm_hadd_epi32(vacc0x2, vacc0x3);
79
80 __m128i vacc0x0123 = _mm_hadd_epi32(vacc0x01, vacc0x23);
81
82 const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier);
83 const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding);
84
85 const __m128i vnmask0x0123 = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc0x0123);
86
87 const __m128i vabsacc0x0123 = _mm_abs_epi32(vacc0x0123);
88
89 const __m128i vabsacc0x1133 = _mm_shuffle_epi32(vabsacc0x0123, _MM_SHUFFLE(3, 3, 1, 1));
90
91 const __m128i vabsprod0x02 = _mm_mul_epu32(vabsacc0x0123, vmultiplier);
92
93 const __m128i vnmask0x02 = _mm_shuffle_epi32(vnmask0x0123, _MM_SHUFFLE(2, 2, 0, 0));
94
95 const __m128i vprod0x02 = _mm_sub_epi64(_mm_xor_si128(vabsprod0x02, vnmask0x02), vnmask0x02);
96
97 const __m128i vq31prod0x02 = _mm_srli_epi64(_mm_add_epi64(vprod0x02, vrounding), 31);
98
99 const __m128i vabsprod0x13 = _mm_mul_epu32(vabsacc0x1133, vmultiplier);
100
101 const __m128i vnmask0x13 = _mm_shuffle_epi32(vnmask0x0123, _MM_SHUFFLE(3, 3, 1, 1));
102
103 const __m128i vprod0x13 = _mm_sub_epi64(_mm_xor_si128(vabsprod0x13, vnmask0x13), vnmask0x13);
104
105 const __m128i vq31prod0x13 = _mm_srli_epi64(_mm_add_epi64(vprod0x13, vrounding), 31);
106
107 const __m128i vq31prod0x0213 = _mm_castps_si128(_mm_shuffle_ps(
108 _mm_castsi128_ps(vq31prod0x02), _mm_castsi128_ps(vq31prod0x13), _MM_SHUFFLE(2, 0, 2, 0)));
109
110 const __m128i vq31prod0x0123 = _mm_shuffle_epi32(vq31prod0x0213, _MM_SHUFFLE(3, 1, 2, 0));
111
112 const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask);
113 const __m128i vrem0x0123 =
114 _mm_add_epi32(_mm_and_si128(vq31prod0x0123, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod0x0123));
115
116 const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold);
117 const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift);
118 vacc0x0123 =
119 _mm_sub_epi32(_mm_sra_epi32(vq31prod0x0123, vshift), _mm_cmpgt_epi32(vrem0x0123, vremainder_threshold));
120
121 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point);
122 __m128i vacc00x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc0x0123), voutput_zero_point);
123
124 const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min);
125 const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max);
126 vacc00x0123 = _mm_min_epi16(_mm_max_epi16(vacc00x0123, voutput_min), voutput_max);
127
128 __m128i vout = _mm_packs_epi16(vacc00x0123, vacc00x0123);
129
130 if (nc >= 4) {
131 *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
132
133 c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
134
135 a0 = (const int8_t*) ((uintptr_t) a0 - kc);
136
137 nc -= 4;
138 } else {
139 if (nc & 2) {
140 *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
141 c0 += 2;
142 vout = _mm_srli_epi32(vout, 16);
143 }
144 if (nc & 1) {
145 *((int8_t*) c0) = (int8_t) _mm_cvtsi128_si32(vout);
146 }
147
148 nc = 0;
149 }
150 } while (nc != 0);
151 }
152