• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c8-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <smmintrin.h>
13 
14 #include <xnnpack/gemm.h>
15 #include <xnnpack/math.h>
16 
17 
xnn_qs8_gemm_xw_minmax_ukernel_1x4c8__sse41(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qs8_gemm_xw_params params[restrict XNN_MIN_ELEMENTS (1)])18 void xnn_qs8_gemm_xw_minmax_ukernel_1x4c8__sse41(
19     size_t mr,
20     size_t nc,
21     size_t kc,
22     const int8_t* restrict a,
23     size_t a_stride,
24     const void* restrict w,
25     int8_t* restrict c,
26     size_t cm_stride,
27     size_t cn_stride,
28     const union xnn_qs8_gemm_xw_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN
29 {
30   assert(mr != 0);
31   assert(mr <= 1);
32   assert(nc != 0);
33   assert(kc != 0);
34   assert(kc % sizeof(int8_t) == 0);
35   assert(a != NULL);
36   assert(w != NULL);
37   assert(c != NULL);
38 
39   kc = round_up_po2(kc, 8);
40   const int8_t* a0 = a;
41   int8_t* c0 = c;
42 
43   do {
44     __m128i vacc0x0 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[0]);
45     __m128i vacc0x1 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[1]);
46     __m128i vacc0x2 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[2]);
47     __m128i vacc0x3 = _mm_cvtsi32_si128((int) ((const int32_t*) w)[3]);
48     w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t));
49 
50     size_t k = 0;
51     while (k < kc) {
52       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
53       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
54       a0 += 8;
55 
56       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
57 
58       vacc0x0 = _mm_add_epi32(vacc0x0, _mm_madd_epi16(vxa0, vxb0));
59       const __m128i vxb1 = _mm_load_si128((const __m128i*) ((uintptr_t) w + 8 * sizeof(int16_t)));
60 
61       vacc0x1 = _mm_add_epi32(vacc0x1, _mm_madd_epi16(vxa0, vxb1));
62       const __m128i vxb2 = _mm_load_si128((const __m128i*) ((uintptr_t) w + 16 * sizeof(int16_t)));
63 
64       vacc0x2 = _mm_add_epi32(vacc0x2, _mm_madd_epi16(vxa0, vxb2));
65       const __m128i vxb3 = _mm_load_si128((const __m128i*) ((uintptr_t) w + 24 * sizeof(int16_t)));
66 
67       vacc0x3 = _mm_add_epi32(vacc0x3, _mm_madd_epi16(vxa0, vxb3));
68 
69       w = (const void*) ((uintptr_t) w + 32 * sizeof(int16_t));
70       k += 8 * sizeof(int8_t);
71     }
72 
73     const __m128i vacc0x01 = _mm_hadd_epi32(vacc0x0, vacc0x1);
74     const __m128i vacc0x23 = _mm_hadd_epi32(vacc0x2, vacc0x3);
75 
76     __m128i vacc0x0123 = _mm_hadd_epi32(vacc0x01, vacc0x23);
77 
78     const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier);
79     const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding);
80 
81     const __m128i vacc0x1133 = _mm_shuffle_epi32(vacc0x0123, _MM_SHUFFLE(3, 3, 1, 1));
82 
83     const __m128i vprod0x02 = _mm_add_epi64(_mm_mul_epi32(vacc0x0123, vmultiplier), vrounding);
84 
85     const __m128i vprod0x13 = _mm_add_epi64(_mm_mul_epi32(vacc0x1133, vmultiplier), vrounding);
86 
87     const __m128i vq31prod0x02 = _mm_srli_epi64(vprod0x02, 31);
88     const __m128i vq31prod0x13 = _mm_add_epi64(vprod0x13, vprod0x13);
89 
90     const __m128i vq31prod0x0123 = _mm_blend_epi16(vq31prod0x02, vq31prod0x13, 0xCC);
91 
92     const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask);
93     const __m128i vrem0x0123 =
94       _mm_add_epi32(_mm_and_si128(vq31prod0x0123, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod0x0123));
95 
96     const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold);
97     const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift);
98     vacc0x0123 =
99       _mm_sub_epi32(_mm_sra_epi32(vq31prod0x0123, vshift), _mm_cmpgt_epi32(vrem0x0123, vremainder_threshold));
100 
101     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point);
102     __m128i vacc00x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc0x0123), voutput_zero_point);
103 
104     const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min);
105     const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max);
106     vacc00x0123 = _mm_min_epi16(_mm_max_epi16(vacc00x0123, voutput_min), voutput_max);
107 
108     __m128i vout = _mm_packs_epi16(vacc00x0123, vacc00x0123);
109 
110     if (nc >= 4) {
111       *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
112 
113       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
114 
115       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
116 
117       nc -= 4;
118     } else {
119       if (nc & 2) {
120         *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout, 0);
121         c0 += 2;
122         vout = _mm_srli_epi32(vout, 16);
123       }
124       if (nc & 1) {
125         *((int8_t*) c0) = (int8_t) _mm_extract_epi8(vout, 0);
126       }
127 
128       nc = 0;
129     }
130   } while (nc != 0);
131 }
132