• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #pragma once
7 
8 #include <gtest/gtest.h>
9 
10 #include <algorithm>
11 #include <cassert>
12 #include <cstddef>
13 #include <cstdlib>
14 #include <functional>
15 #include <limits>
16 #include <random>
17 #include <vector>
18 
19 #include <xnnpack.h>
20 
21 
22 class UnpoolingOperatorTester {
23  public:
padding(uint32_t padding)24   inline UnpoolingOperatorTester& padding(uint32_t padding) {
25     this->padding_top_ = padding;
26     this->padding_right_ = padding;
27     this->padding_bottom_ = padding;
28     this->padding_left_ = padding;
29     return *this;
30   }
31 
padding(uint32_t padding_height,uint32_t padding_width)32   inline UnpoolingOperatorTester& padding(uint32_t padding_height, uint32_t padding_width) {
33     this->padding_top_ = padding_height;
34     this->padding_right_ = padding_width;
35     this->padding_bottom_ = padding_height;
36     this->padding_left_ = padding_width;
37     return *this;
38   }
39 
padding_height(uint32_t padding_height)40   inline UnpoolingOperatorTester& padding_height(uint32_t padding_height) {
41     this->padding_top_ = padding_height;
42     this->padding_bottom_ = padding_height;
43     return *this;
44   }
45 
padding_width(uint32_t padding_width)46   inline UnpoolingOperatorTester& padding_width(uint32_t padding_width) {
47     this->padding_right_ = padding_width;
48     this->padding_left_ = padding_width;
49     return *this;
50   }
51 
padding_top(uint32_t padding_top)52   inline UnpoolingOperatorTester& padding_top(uint32_t padding_top) {
53     this->padding_top_ = padding_top;
54     return *this;
55   }
56 
padding_top()57   inline uint32_t padding_top() const {
58     return this->padding_top_;
59   }
60 
padding_right(uint32_t padding_right)61   inline UnpoolingOperatorTester& padding_right(uint32_t padding_right) {
62     this->padding_right_ = padding_right;
63     return *this;
64   }
65 
padding_right()66   inline uint32_t padding_right() const {
67     return this->padding_right_;
68   }
69 
padding_bottom(uint32_t padding_bottom)70   inline UnpoolingOperatorTester& padding_bottom(uint32_t padding_bottom) {
71     this->padding_bottom_ = padding_bottom;
72     return *this;
73   }
74 
padding_bottom()75   inline uint32_t padding_bottom() const {
76     return this->padding_bottom_;
77   }
78 
padding_left(uint32_t padding_left)79   inline UnpoolingOperatorTester& padding_left(uint32_t padding_left) {
80     this->padding_left_ = padding_left;
81     return *this;
82   }
83 
padding_left()84   inline uint32_t padding_left() const {
85     return this->padding_left_;
86   }
87 
input_size(size_t input_height,size_t input_width)88   inline UnpoolingOperatorTester& input_size(size_t input_height, size_t input_width) {
89     assert(input_height >= 1);
90     assert(input_width >= 1);
91     this->input_height_ = input_height;
92     this->input_width_ = input_width;
93     return *this;
94   }
95 
input_height(size_t input_height)96   inline UnpoolingOperatorTester& input_height(size_t input_height) {
97     assert(input_height >= 1);
98     this->input_height_ = input_height;
99     return *this;
100   }
101 
input_height()102   inline size_t input_height() const {
103     return this->input_height_;
104   }
105 
input_width(size_t input_width)106   inline UnpoolingOperatorTester& input_width(size_t input_width) {
107     assert(input_width >= 1);
108     this->input_width_ = input_width;
109     return *this;
110   }
111 
input_width()112   inline size_t input_width() const {
113     return this->input_width_;
114   }
115 
channels(size_t channels)116   inline UnpoolingOperatorTester& channels(size_t channels) {
117     assert(channels != 0);
118     this->channels_ = channels;
119     return *this;
120   }
121 
channels()122   inline size_t channels() const {
123     return this->channels_;
124   }
125 
batch_size(size_t batch_size)126   inline UnpoolingOperatorTester& batch_size(size_t batch_size) {
127     assert(batch_size != 0);
128     this->batch_size_ = batch_size;
129     return *this;
130   }
131 
batch_size()132   inline size_t batch_size() const {
133     return this->batch_size_;
134   }
135 
pooling_size(uint32_t pooling_size)136   inline UnpoolingOperatorTester& pooling_size(uint32_t pooling_size) {
137     assert(pooling_size >= 1);
138     this->pooling_height_ = pooling_size;
139     this->pooling_width_ = pooling_size;
140     return *this;
141   }
142 
pooling_size(uint32_t pooling_height,uint32_t pooling_width)143   inline UnpoolingOperatorTester& pooling_size(uint32_t pooling_height, uint32_t pooling_width) {
144     assert(pooling_height >= 1);
145     assert(pooling_width >= 1);
146     this->pooling_height_ = pooling_height;
147     this->pooling_width_ = pooling_width;
148     return *this;
149   }
150 
pooling_height(uint32_t pooling_height)151   inline UnpoolingOperatorTester& pooling_height(uint32_t pooling_height) {
152     assert(pooling_height >= 1);
153     this->pooling_height_ = pooling_height;
154     return *this;
155   }
156 
pooling_height()157   inline uint32_t pooling_height() const {
158     return this->pooling_height_;
159   }
160 
pooling_width(uint32_t pooling_width)161   inline UnpoolingOperatorTester& pooling_width(uint32_t pooling_width) {
162     assert(pooling_width >= 1);
163     this->pooling_width_ = pooling_width;
164     return *this;
165   }
166 
pooling_width()167   inline uint32_t pooling_width() const {
168     return this->pooling_width_;
169   }
170 
output_height()171   inline size_t output_height() const {
172     const size_t padding_height = padding_top() + padding_bottom();
173     return std::max<size_t>(input_height() * pooling_height(), padding_height) - padding_height;
174   }
175 
output_width()176   inline size_t output_width() const {
177     const size_t padding_width = padding_left() + padding_right();
178     return std::max<size_t>(input_width() * pooling_width(), padding_width) - padding_width;
179   }
180 
input_pixel_stride(size_t input_pixel_stride)181   inline UnpoolingOperatorTester& input_pixel_stride(size_t input_pixel_stride) {
182     assert(input_pixel_stride != 0);
183     this->input_pixel_stride_ = input_pixel_stride;
184     return *this;
185   }
186 
input_pixel_stride()187   inline size_t input_pixel_stride() const {
188     if (this->input_pixel_stride_ == 0) {
189       return channels();
190     } else {
191       assert(this->input_pixel_stride_ >= channels());
192       return this->input_pixel_stride_;
193     }
194   }
195 
output_pixel_stride(size_t output_pixel_stride)196   inline UnpoolingOperatorTester& output_pixel_stride(size_t output_pixel_stride) {
197     assert(output_pixel_stride != 0);
198     this->output_pixel_stride_ = output_pixel_stride;
199     return *this;
200   }
201 
output_pixel_stride()202   inline size_t output_pixel_stride() const {
203     if (this->output_pixel_stride_ == 0) {
204       return channels();
205     } else {
206       assert(this->output_pixel_stride_ >= channels());
207       return this->output_pixel_stride_;
208     }
209   }
210 
next_input_size(uint32_t next_input_height,uint32_t next_input_width)211   inline UnpoolingOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) {
212     assert(next_input_height >= 1);
213     assert(next_input_width >= 1);
214     this->next_input_height_ = next_input_height;
215     this->next_input_width_ = next_input_width;
216     return *this;
217   }
218 
next_input_height(uint32_t next_input_height)219   inline UnpoolingOperatorTester& next_input_height(uint32_t next_input_height) {
220     assert(next_input_height >= 1);
221     this->next_input_height_ = next_input_height;
222     return *this;
223   }
224 
next_input_height()225   inline uint32_t next_input_height() const {
226     if (this->next_input_height_ == 0) {
227       return input_height();
228     } else {
229       return this->next_input_height_;
230     }
231   }
232 
next_input_width(uint32_t next_input_width)233   inline UnpoolingOperatorTester& next_input_width(uint32_t next_input_width) {
234     assert(next_input_width >= 1);
235     this->next_input_width_ = next_input_width;
236     return *this;
237   }
238 
next_input_width()239   inline uint32_t next_input_width() const {
240     if (this->next_input_width_ == 0) {
241       return input_width();
242     } else {
243       return this->next_input_width_;
244     }
245   }
246 
next_output_height()247   inline size_t next_output_height() const {
248     const size_t padding_height = padding_top() + padding_bottom();
249     return std::max<size_t>(next_input_height() * pooling_height(), padding_height) - padding_height;
250   }
251 
next_output_width()252   inline size_t next_output_width() const {
253     const size_t padding_width = padding_left() + padding_right();
254     return std::max<size_t>(next_input_width() * pooling_width(), padding_width) - padding_width;
255   }
256 
next_batch_size(size_t next_batch_size)257   inline UnpoolingOperatorTester& next_batch_size(size_t next_batch_size) {
258     assert(next_batch_size >= 1);
259     this->next_batch_size_ = next_batch_size;
260     return *this;
261   }
262 
next_batch_size()263   inline size_t next_batch_size() const {
264     if (this->next_batch_size_ == 0) {
265       return batch_size();
266     } else {
267       return this->next_batch_size_;
268     }
269   }
270 
iterations(size_t iterations)271   inline UnpoolingOperatorTester& iterations(size_t iterations) {
272     this->iterations_ = iterations;
273     return *this;
274   }
275 
iterations()276   inline size_t iterations() const {
277     return this->iterations_;
278   }
279 
TestX32()280   void TestX32() const {
281     std::random_device random_device;
282     auto rng = std::mt19937(random_device());
283     auto u32rng = std::bind(std::uniform_int_distribution<uint32_t>(), std::ref(rng));
284     auto idx_rng = std::bind(std::uniform_int_distribution<uint32_t>(0, pooling_height() * pooling_width() - 1), std::ref(rng));
285 
286     std::vector<uint32_t> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels());
287     std::vector<uint32_t> index(batch_size() * input_height() * input_width() * channels());
288     std::vector<uint32_t> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels());
289     std::vector<uint32_t> output_ref(batch_size() * output_height() * output_width() * channels());
290     for (size_t iteration = 0; iteration < iterations(); iteration++) {
291       std::generate(input.begin(), input.end(), std::ref(u32rng));
292       std::generate(index.begin(), index.end(), std::ref(idx_rng));
293       std::generate(output.begin(), output.end(), std::ref(u32rng));
294 
295       // Compute reference results.
296       std::fill(output_ref.begin(), output_ref.end(), 0);
297       for (size_t i = 0; i < batch_size(); i++) {
298         for (size_t iy = 0; iy < input_height(); iy++) {
299           for (size_t ix = 0; ix < input_width(); ix++) {
300             for (size_t c = 0; c < channels(); c++) {
301               const uint32_t pooling_index = index[((i * input_height() + iy) * input_width() + ix) * channels() + c];
302               const uint32_t py = pooling_index % pooling_height();
303               const uint32_t px = pooling_index / pooling_height();
304               const size_t oy = std::min(std::max<size_t>(iy * pooling_height() + py, padding_top()) - padding_top(), output_height() - 1);
305               const size_t ox = std::min(std::max<size_t>(ix * pooling_width() + px, padding_left()) - padding_left(), output_width() - 1);
306               output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] =
307                 input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c];
308             }
309           }
310         }
311       }
312 
313       // Create, setup, run, and destroy Unpooling operator.
314       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
315       xnn_operator_t unpooling_op = nullptr;
316 
317       ASSERT_EQ(xnn_status_success,
318         xnn_create_unpooling2d_nhwc_x32(
319           padding_top(), padding_right(), padding_bottom(), padding_left(),
320           pooling_height(), pooling_width(),
321           channels(), input_pixel_stride(), output_pixel_stride(),
322           0, &unpooling_op));
323       ASSERT_NE(nullptr, unpooling_op);
324 
325       // Smart pointer to automatically delete unpooling_op.
326       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_unpooling_op(unpooling_op, xnn_delete_operator);
327 
328       ASSERT_EQ(xnn_status_success,
329         xnn_setup_unpooling2d_nhwc_x32(
330           unpooling_op,
331           batch_size(), input_height(), input_width(),
332           input.data(), index.data(), output.data(),
333           nullptr /* thread pool */));
334 
335       ASSERT_EQ(xnn_status_success,
336         xnn_run_operator(unpooling_op, nullptr /* thread pool */));
337 
338       // Verify results.
339       for (size_t i = 0; i < batch_size(); i++) {
340         for (size_t c = 0; c < channels(); c++) {
341           for (size_t y = 0; y < output_height(); y++) {
342             for (size_t x = 0; x < output_width(); x++) {
343               EXPECT_EQ(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c],
344                 output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]) <<
345                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
346             }
347           }
348         }
349       }
350     }
351   }
352 
TestSetupX32()353   void TestSetupX32() const {
354     std::random_device random_device;
355     auto rng = std::mt19937(random_device());
356     auto u32rng = std::bind(std::uniform_int_distribution<uint32_t>(), std::ref(rng));
357     auto idx_rng = std::bind(std::uniform_int_distribution<uint32_t>(0, pooling_height() * pooling_width() - 1), std::ref(rng));
358 
359     std::vector<uint32_t> input(std::max(
360       (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(),
361       (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels()));
362     std::vector<uint32_t> index(std::max(
363       batch_size() * input_height() * input_width() * channels(),
364       next_batch_size() * next_input_height() * next_input_width() * channels()));
365     std::vector<uint32_t> output(std::max(
366       (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(),
367       (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() * channels()));
368     std::vector<uint32_t> output_ref(batch_size() * output_height() * output_width() * channels());
369     std::vector<uint32_t> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels());
370 
371     for (size_t iteration = 0; iteration < iterations(); iteration++) {
372       std::generate(input.begin(), input.end(), std::ref(u32rng));
373       std::generate(index.begin(), index.end(), std::ref(idx_rng));
374       std::generate(output.begin(), output.end(), std::ref(u32rng));
375 
376       // Compute reference results.
377       std::fill(output_ref.begin(), output_ref.end(), 0);
378       for (size_t i = 0; i < batch_size(); i++) {
379         for (size_t iy = 0; iy < input_height(); iy++) {
380           for (size_t ix = 0; ix < input_width(); ix++) {
381             for (size_t c = 0; c < channels(); c++) {
382               const uint32_t pooling_index = index[((i * input_height() + iy) * input_width() + ix) * channels() + c];
383               const uint32_t py = pooling_index % pooling_height();
384               const uint32_t px = pooling_index / pooling_height();
385               const size_t oy = std::min(std::max<size_t>(iy * pooling_height() + py, padding_top()) - padding_top(), output_height() - 1);
386               const size_t ox = std::min(std::max<size_t>(ix * pooling_width() + px, padding_left()) - padding_left(), output_width() - 1);
387               output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] =
388                 input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c];
389             }
390           }
391         }
392       }
393 
394       // Create, setup, and run Unpooling operator once.
395       ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
396       xnn_operator_t unpooling_op = nullptr;
397 
398       ASSERT_EQ(xnn_status_success,
399         xnn_create_unpooling2d_nhwc_x32(
400           padding_top(), padding_right(), padding_bottom(), padding_left(),
401           pooling_height(), pooling_width(),
402           channels(), input_pixel_stride(), output_pixel_stride(),
403           0, &unpooling_op));
404       ASSERT_NE(nullptr, unpooling_op);
405 
406       // Smart pointer to automatically delete unpooling_op.
407       std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_unpooling_op(unpooling_op, xnn_delete_operator);
408 
409       ASSERT_EQ(xnn_status_success,
410         xnn_setup_unpooling2d_nhwc_x32(
411           unpooling_op,
412           batch_size(), input_height(), input_width(),
413           input.data(), index.data(), output.data(),
414           nullptr /* thread pool */));
415 
416       ASSERT_EQ(xnn_status_success,
417         xnn_run_operator(unpooling_op, nullptr /* thread pool */));
418 
419       // Verify results of the first run.
420       for (size_t i = 0; i < batch_size(); i++) {
421         for (size_t c = 0; c < channels(); c++) {
422           for (size_t y = 0; y < output_height(); y++) {
423             for (size_t x = 0; x < output_width(); x++) {
424               EXPECT_EQ(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c],
425                 output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]) <<
426                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
427             }
428           }
429         }
430       }
431 
432       // Re-generate data for the second run.
433       std::generate(input.begin(), input.end(), std::ref(u32rng));
434       std::generate(index.begin(), index.end(), std::ref(idx_rng));
435       std::generate(output.begin(), output.end(), std::ref(u32rng));
436 
437       // Compute reference results for the second run, including clamping.
438       std::fill(next_output_ref.begin(), next_output_ref.end(), 0);
439       for (size_t i = 0; i < next_batch_size(); i++) {
440         for (size_t iy = 0; iy < next_input_height(); iy++) {
441           for (size_t ix = 0; ix < next_input_width(); ix++) {
442             for (size_t c = 0; c < channels(); c++) {
443               const uint32_t pooling_index = index[((i * next_input_height() + iy) * next_input_width() + ix) * channels() + c];
444               const uint32_t py = pooling_index % pooling_height();
445               const uint32_t px = pooling_index / pooling_height();
446               const size_t oy = std::min(std::max<size_t>(iy * pooling_height() + py, padding_top()) - padding_top(), next_output_height() - 1);
447               const size_t ox = std::min(std::max<size_t>(ix * pooling_width() + px, padding_left()) - padding_left(), next_output_width() - 1);
448               next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] =
449                 input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c];
450             }
451           }
452         }
453       }
454 
455       // Setup and run Max Pooling operator the second time, and destroy the operator.
456       ASSERT_EQ(xnn_status_success,
457         xnn_setup_unpooling2d_nhwc_x32(
458           unpooling_op,
459           next_batch_size(), next_input_height(), next_input_width(),
460           input.data(), index.data(), output.data(),
461           nullptr /* thread pool */));
462 
463       ASSERT_EQ(xnn_status_success,
464         xnn_run_operator(unpooling_op, nullptr /* thread pool */));
465 
466       // Verify results of the second run.
467       for (size_t i = 0; i < next_batch_size(); i++) {
468         for (size_t c = 0; c < channels(); c++) {
469           for (size_t y = 0; y < next_output_height(); y++) {
470             for (size_t x = 0; x < next_output_width(); x++) {
471               EXPECT_EQ(next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c],
472                 output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]) <<
473                 "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c;
474             }
475           }
476         }
477       }
478     }
479   }
480 
481  private:
482   uint32_t padding_top_{0};
483   uint32_t padding_right_{0};
484   uint32_t padding_bottom_{0};
485   uint32_t padding_left_{0};
486   size_t input_height_{1};
487   size_t input_width_{1};
488   size_t channels_{1};
489   size_t batch_size_{1};
490   size_t input_pixel_stride_{0};
491   size_t output_pixel_stride_{0};
492   uint32_t pooling_height_{1};
493   uint32_t pooling_width_{1};
494   size_t next_input_height_{0};
495   size_t next_input_width_{0};
496   size_t next_batch_size_{0};
497   size_t iterations_{1};
498 };
499