1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4 © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6
7 1. INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33
34 2. COPYRIGHT LICENSE
35
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60
61 3. NO PATENT LICENSE
62
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70
71 4. DISCLAIMER
72
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83
84 5. CONTACT INFORMATION
85
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94
95 /**************************** AAC decoder library ******************************
96
97 Author(s): Josef Hoepfl
98
99 Description: temporal noise shaping tool
100
101 *******************************************************************************/
102
103 #include "aacdec_tns.h"
104 #include "aac_rom.h"
105 #include "FDK_bitstream.h"
106 #include "channelinfo.h"
107
108 #include "FDK_lpc.h"
109
110 #define TNS_MAXIMUM_ORDER_AAC 12
111
112 /*!
113 \brief Reset tns data
114
115 The function resets the tns data
116
117 \return none
118 */
CTns_Reset(CTnsData * pTnsData)119 void CTns_Reset(CTnsData *pTnsData) {
120 /* Note: the following FDKmemclear should not be required. */
121 FDKmemclear(pTnsData->Filter,
122 TNS_MAX_WINDOWS * TNS_MAXIMUM_FILTERS * sizeof(CFilter));
123 FDKmemclear(pTnsData->NumberOfFilters, TNS_MAX_WINDOWS * sizeof(UCHAR));
124 pTnsData->DataPresent = 0;
125 pTnsData->Active = 0;
126 }
127
CTns_ReadDataPresentFlag(HANDLE_FDK_BITSTREAM bs,CTnsData * pTnsData)128 void CTns_ReadDataPresentFlag(
129 HANDLE_FDK_BITSTREAM bs, /*!< pointer to bitstream */
130 CTnsData *pTnsData) /*!< pointer to aac decoder channel info */
131 {
132 pTnsData->DataPresent = (UCHAR)FDKreadBits(bs, 1);
133 }
134
135 /*!
136 \brief Read tns data from bitstream
137
138 The function reads the elements for tns from
139 the bitstream.
140
141 \return none
142 */
CTns_Read(HANDLE_FDK_BITSTREAM bs,CTnsData * pTnsData,const CIcsInfo * pIcsInfo,const UINT flags)143 AAC_DECODER_ERROR CTns_Read(HANDLE_FDK_BITSTREAM bs, CTnsData *pTnsData,
144 const CIcsInfo *pIcsInfo, const UINT flags) {
145 UCHAR n_filt, order;
146 UCHAR length, coef_res, coef_compress;
147 UCHAR window;
148 UCHAR wins_per_frame;
149 UCHAR isLongFlag;
150 UCHAR start_window;
151 AAC_DECODER_ERROR ErrorStatus = AAC_DEC_OK;
152
153 if (!pTnsData->DataPresent) {
154 return ErrorStatus;
155 }
156
157 {
158 start_window = 0;
159 wins_per_frame = GetWindowsPerFrame(pIcsInfo);
160 isLongFlag = IsLongBlock(pIcsInfo);
161 }
162
163 pTnsData->GainLd = 0;
164
165 for (window = start_window; window < wins_per_frame; window++) {
166 pTnsData->NumberOfFilters[window] = n_filt =
167 (UCHAR)FDKreadBits(bs, isLongFlag ? 2 : 1);
168
169 if (n_filt) {
170 int index;
171 UCHAR nextstopband;
172
173 coef_res = (UCHAR)FDKreadBits(bs, 1);
174
175 nextstopband = GetScaleFactorBandsTotal(pIcsInfo);
176
177 for (index = 0; index < n_filt; index++) {
178 CFilter *filter = &pTnsData->Filter[window][index];
179
180 length = (UCHAR)FDKreadBits(bs, isLongFlag ? 6 : 4);
181
182 if (length > nextstopband) {
183 length = nextstopband;
184 }
185
186 filter->StartBand = nextstopband - length;
187 filter->StopBand = nextstopband;
188 nextstopband = filter->StartBand;
189
190 if (flags & (AC_USAC | AC_RSVD50 | AC_RSV603DA)) {
191 /* max(Order) = 15 (long), 7 (short) */
192 filter->Order = order = (UCHAR)FDKreadBits(bs, isLongFlag ? 4 : 3);
193 } else {
194 filter->Order = order = (UCHAR)FDKreadBits(bs, isLongFlag ? 5 : 3);
195
196 if (filter->Order > TNS_MAXIMUM_ORDER) {
197 ErrorStatus = AAC_DEC_TNS_READ_ERROR;
198 return ErrorStatus;
199 }
200 }
201
202 FDK_ASSERT(order <=
203 TNS_MAXIMUM_ORDER); /* avoid illegal memory access */
204 if (order) {
205 UCHAR coef, s_mask;
206 UCHAR i;
207 SCHAR n_mask;
208
209 static const UCHAR sgn_mask[] = {0x2, 0x4, 0x8};
210 static const SCHAR neg_mask[] = {~0x3, ~0x7, ~0xF};
211
212 filter->Direction = FDKreadBits(bs, 1) ? -1 : 1;
213
214 coef_compress = (UCHAR)FDKreadBits(bs, 1);
215
216 filter->Resolution = coef_res + 3;
217
218 s_mask = sgn_mask[coef_res + 1 - coef_compress];
219 n_mask = neg_mask[coef_res + 1 - coef_compress];
220
221 for (i = 0; i < order; i++) {
222 coef = (UCHAR)FDKreadBits(bs, filter->Resolution - coef_compress);
223 filter->Coeff[i] = (coef & s_mask) ? (coef | n_mask) : coef;
224 }
225 pTnsData->GainLd = 4;
226 }
227 }
228 }
229 }
230
231 pTnsData->Active = 1;
232
233 return ErrorStatus;
234 }
235
CTns_ReadDataPresentUsac(HANDLE_FDK_BITSTREAM hBs,CTnsData * pTnsData0,CTnsData * pTnsData1,UCHAR * ptns_on_lr,const CIcsInfo * pIcsInfo,const UINT flags,const UINT elFlags,const int fCommonWindow)236 void CTns_ReadDataPresentUsac(HANDLE_FDK_BITSTREAM hBs, CTnsData *pTnsData0,
237 CTnsData *pTnsData1, UCHAR *ptns_on_lr,
238 const CIcsInfo *pIcsInfo, const UINT flags,
239 const UINT elFlags, const int fCommonWindow) {
240 int common_tns = 0;
241
242 if (fCommonWindow) {
243 common_tns = FDKreadBit(hBs);
244 }
245 { *ptns_on_lr = FDKreadBit(hBs); }
246 if (common_tns) {
247 pTnsData0->DataPresent = 1;
248 CTns_Read(hBs, pTnsData0, pIcsInfo, flags);
249
250 pTnsData0->DataPresent = 0;
251 pTnsData0->Active = 1;
252 *pTnsData1 = *pTnsData0;
253 } else {
254 int tns_present_both;
255
256 tns_present_both = FDKreadBit(hBs);
257 if (tns_present_both) {
258 pTnsData0->DataPresent = 1;
259 pTnsData1->DataPresent = 1;
260 } else {
261 pTnsData1->DataPresent = FDKreadBit(hBs);
262 pTnsData0->DataPresent = !pTnsData1->DataPresent;
263 }
264 }
265 }
266
267 /*!
268 \brief Apply tns to spectral lines
269
270 The function applies the tns to the spectrum,
271
272 \return none
273 */
CTns_Apply(CTnsData * RESTRICT pTnsData,const CIcsInfo * pIcsInfo,SPECTRAL_PTR pSpectralCoefficient,const SamplingRateInfo * pSamplingRateInfo,const INT granuleLength,const UCHAR nbands,const UCHAR igf_active,const UINT flags)274 void CTns_Apply(CTnsData *RESTRICT pTnsData, /*!< pointer to aac decoder info */
275 const CIcsInfo *pIcsInfo, SPECTRAL_PTR pSpectralCoefficient,
276 const SamplingRateInfo *pSamplingRateInfo,
277 const INT granuleLength, const UCHAR nbands,
278 const UCHAR igf_active, const UINT flags) {
279 int window, index, start, stop, size, start_window, wins_per_frame;
280
281 if (pTnsData->Active) {
282 C_AALLOC_SCRATCH_START(coeff, FIXP_TCC, TNS_MAXIMUM_ORDER)
283
284 {
285 start_window = 0;
286 wins_per_frame = GetWindowsPerFrame(pIcsInfo);
287 }
288
289 for (window = start_window; window < wins_per_frame; window++) {
290 FIXP_DBL *pSpectrum;
291
292 { pSpectrum = SPEC(pSpectralCoefficient, window, granuleLength); }
293
294 for (index = 0; index < pTnsData->NumberOfFilters[window]; index++) {
295 CFilter *filter = &pTnsData->Filter[window][index];
296
297 if (filter->Order > 0) {
298 FIXP_TCC *pCoeff;
299 UCHAR tns_max_bands;
300
301 pCoeff = coeff;
302 if (filter->Resolution == 3) {
303 int i;
304 for (i = 0; i < filter->Order; i++)
305 *pCoeff++ = FDKaacDec_tnsCoeff3[filter->Coeff[i] + 4];
306 } else {
307 int i;
308 for (i = 0; i < filter->Order; i++)
309 *pCoeff++ = FDKaacDec_tnsCoeff4[filter->Coeff[i] + 8];
310 }
311
312 switch (granuleLength) {
313 case 480:
314 tns_max_bands =
315 tns_max_bands_tbl_480[pSamplingRateInfo->samplingRateIndex];
316 break;
317 case 512:
318 tns_max_bands =
319 tns_max_bands_tbl_512[pSamplingRateInfo->samplingRateIndex];
320 break;
321 default:
322 tns_max_bands = GetMaximumTnsBands(
323 pIcsInfo, pSamplingRateInfo->samplingRateIndex);
324 /* See redefinition of TNS_MAX_BANDS table */
325 if ((flags & (AC_USAC | AC_RSVD50 | AC_RSV603DA)) &&
326 (pSamplingRateInfo->samplingRateIndex > 5)) {
327 tns_max_bands += 1;
328 }
329 break;
330 }
331
332 start = fixMin(fixMin(filter->StartBand, tns_max_bands), nbands);
333
334 start = GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo)[start];
335
336 if (igf_active) {
337 stop = fixMin(filter->StopBand, nbands);
338 } else {
339 stop = fixMin(fixMin(filter->StopBand, tns_max_bands), nbands);
340 }
341
342 stop = GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo)[stop];
343
344 size = stop - start;
345
346 if (size) {
347 C_ALLOC_SCRATCH_START(state, FIXP_DBL, TNS_MAXIMUM_ORDER)
348
349 FDKmemclear(state, TNS_MAXIMUM_ORDER * sizeof(FIXP_DBL));
350 CLpc_SynthesisLattice(pSpectrum + start, size, 0, 0,
351 filter->Direction, coeff, filter->Order,
352 state);
353
354 C_ALLOC_SCRATCH_END(state, FIXP_DBL, TNS_MAXIMUM_ORDER)
355 }
356 }
357 }
358 }
359 C_AALLOC_SCRATCH_END(coeff, FIXP_TCC, TNS_MAXIMUM_ORDER)
360 }
361 }
362