1 // Copyright 2018 The Abseil Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // https://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 // 15 // MOTIVATION AND TUTORIAL 16 // 17 // If you want to put in a single heap allocation N doubles followed by M ints, 18 // it's easy if N and M are known at compile time. 19 // 20 // struct S { 21 // double a[N]; 22 // int b[M]; 23 // }; 24 // 25 // S* p = new S; 26 // 27 // But what if N and M are known only in run time? Class template Layout to the 28 // rescue! It's a portable generalization of the technique known as struct hack. 29 // 30 // // This object will tell us everything we need to know about the memory 31 // // layout of double[N] followed by int[M]. It's structurally identical to 32 // // size_t[2] that stores N and M. It's very cheap to create. 33 // const Layout<double, int> layout(N, M); 34 // 35 // // Allocate enough memory for both arrays. `AllocSize()` tells us how much 36 // // memory is needed. We are free to use any allocation function we want as 37 // // long as it returns aligned memory. 38 // std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]); 39 // 40 // // Obtain the pointer to the array of doubles. 41 // // Equivalent to `reinterpret_cast<double*>(p.get())`. 42 // // 43 // // We could have written layout.Pointer<0>(p) instead. If all the types are 44 // // unique you can use either form, but if some types are repeated you must 45 // // use the index form. 46 // double* a = layout.Pointer<double>(p.get()); 47 // 48 // // Obtain the pointer to the array of ints. 49 // // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`. 50 // int* b = layout.Pointer<int>(p); 51 // 52 // If we are unable to specify sizes of all fields, we can pass as many sizes as 53 // we can to `Partial()`. In return, it'll allow us to access the fields whose 54 // locations and sizes can be computed from the provided information. 55 // `Partial()` comes in handy when the array sizes are embedded into the 56 // allocation. 57 // 58 // // size_t[1] containing N, size_t[1] containing M, double[N], int[M]. 59 // using L = Layout<size_t, size_t, double, int>; 60 // 61 // unsigned char* Allocate(size_t n, size_t m) { 62 // const L layout(1, 1, n, m); 63 // unsigned char* p = new unsigned char[layout.AllocSize()]; 64 // *layout.Pointer<0>(p) = n; 65 // *layout.Pointer<1>(p) = m; 66 // return p; 67 // } 68 // 69 // void Use(unsigned char* p) { 70 // // First, extract N and M. 71 // // Specify that the first array has only one element. Using `prefix` we 72 // // can access the first two arrays but not more. 73 // constexpr auto prefix = L::Partial(1); 74 // size_t n = *prefix.Pointer<0>(p); 75 // size_t m = *prefix.Pointer<1>(p); 76 // 77 // // Now we can get pointers to the payload. 78 // const L layout(1, 1, n, m); 79 // double* a = layout.Pointer<double>(p); 80 // int* b = layout.Pointer<int>(p); 81 // } 82 // 83 // The layout we used above combines fixed-size with dynamically-sized fields. 84 // This is quite common. Layout is optimized for this use case and generates 85 // optimal code. All computations that can be performed at compile time are 86 // indeed performed at compile time. 87 // 88 // Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to 89 // ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no 90 // padding in between arrays. 91 // 92 // You can manually override the alignment of an array by wrapping the type in 93 // `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API 94 // and behavior as `Layout<..., T, ...>` except that the first element of the 95 // array of `T` is aligned to `N` (the rest of the elements follow without 96 // padding). `N` cannot be less than `alignof(T)`. 97 // 98 // `AllocSize()` and `Pointer()` are the most basic methods for dealing with 99 // memory layouts. Check out the reference or code below to discover more. 100 // 101 // EXAMPLE 102 // 103 // // Immutable move-only string with sizeof equal to sizeof(void*). The 104 // // string size and the characters are kept in the same heap allocation. 105 // class CompactString { 106 // public: 107 // CompactString(const char* s = "") { 108 // const size_t size = strlen(s); 109 // // size_t[1] followed by char[size + 1]. 110 // const L layout(1, size + 1); 111 // p_.reset(new unsigned char[layout.AllocSize()]); 112 // // If running under ASAN, mark the padding bytes, if any, to catch 113 // // memory errors. 114 // layout.PoisonPadding(p_.get()); 115 // // Store the size in the allocation. 116 // *layout.Pointer<size_t>(p_.get()) = size; 117 // // Store the characters in the allocation. 118 // memcpy(layout.Pointer<char>(p_.get()), s, size + 1); 119 // } 120 // 121 // size_t size() const { 122 // // Equivalent to reinterpret_cast<size_t&>(*p). 123 // return *L::Partial().Pointer<size_t>(p_.get()); 124 // } 125 // 126 // const char* c_str() const { 127 // // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)). 128 // // The argument in Partial(1) specifies that we have size_t[1] in front 129 // // of the characters. 130 // return L::Partial(1).Pointer<char>(p_.get()); 131 // } 132 // 133 // private: 134 // // Our heap allocation contains a size_t followed by an array of chars. 135 // using L = Layout<size_t, char>; 136 // std::unique_ptr<unsigned char[]> p_; 137 // }; 138 // 139 // int main() { 140 // CompactString s = "hello"; 141 // assert(s.size() == 5); 142 // assert(strcmp(s.c_str(), "hello") == 0); 143 // } 144 // 145 // DOCUMENTATION 146 // 147 // The interface exported by this file consists of: 148 // - class `Layout<>` and its public members. 149 // - The public members of class `internal_layout::LayoutImpl<>`. That class 150 // isn't intended to be used directly, and its name and template parameter 151 // list are internal implementation details, but the class itself provides 152 // most of the functionality in this file. See comments on its members for 153 // detailed documentation. 154 // 155 // `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a 156 // `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)` 157 // creates a `Layout` object, which exposes the same functionality by inheriting 158 // from `LayoutImpl<>`. 159 160 #ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_ 161 #define ABSL_CONTAINER_INTERNAL_LAYOUT_H_ 162 163 #include <assert.h> 164 #include <stddef.h> 165 #include <stdint.h> 166 #include <ostream> 167 #include <string> 168 #include <tuple> 169 #include <type_traits> 170 #include <typeinfo> 171 #include <utility> 172 173 #ifdef ADDRESS_SANITIZER 174 #include <sanitizer/asan_interface.h> 175 #endif 176 177 #include "absl/meta/type_traits.h" 178 #include "absl/strings/str_cat.h" 179 #include "absl/types/span.h" 180 #include "absl/utility/utility.h" 181 182 #if defined(__GXX_RTTI) 183 #define ABSL_INTERNAL_HAS_CXA_DEMANGLE 184 #endif 185 186 #ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE 187 #include <cxxabi.h> 188 #endif 189 190 namespace absl { 191 ABSL_NAMESPACE_BEGIN 192 namespace container_internal { 193 194 // A type wrapper that instructs `Layout` to use the specific alignment for the 195 // array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API 196 // and behavior as `Layout<..., T, ...>` except that the first element of the 197 // array of `T` is aligned to `N` (the rest of the elements follow without 198 // padding). 199 // 200 // Requires: `N >= alignof(T)` and `N` is a power of 2. 201 template <class T, size_t N> 202 struct Aligned; 203 204 namespace internal_layout { 205 206 template <class T> 207 struct NotAligned {}; 208 209 template <class T, size_t N> 210 struct NotAligned<const Aligned<T, N>> { 211 static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified"); 212 }; 213 214 template <size_t> 215 using IntToSize = size_t; 216 217 template <class> 218 using TypeToSize = size_t; 219 220 template <class T> 221 struct Type : NotAligned<T> { 222 using type = T; 223 }; 224 225 template <class T, size_t N> 226 struct Type<Aligned<T, N>> { 227 using type = T; 228 }; 229 230 template <class T> 231 struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {}; 232 233 template <class T, size_t N> 234 struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {}; 235 236 // Note: workaround for https://gcc.gnu.org/PR88115 237 template <class T> 238 struct AlignOf : NotAligned<T> { 239 static constexpr size_t value = alignof(T); 240 }; 241 242 template <class T, size_t N> 243 struct AlignOf<Aligned<T, N>> { 244 static_assert(N % alignof(T) == 0, 245 "Custom alignment can't be lower than the type's alignment"); 246 static constexpr size_t value = N; 247 }; 248 249 // Does `Ts...` contain `T`? 250 template <class T, class... Ts> 251 using Contains = absl::disjunction<std::is_same<T, Ts>...>; 252 253 template <class From, class To> 254 using CopyConst = 255 typename std::conditional<std::is_const<From>::value, const To, To>::type; 256 257 // Note: We're not qualifying this with absl:: because it doesn't compile under 258 // MSVC. 259 template <class T> 260 using SliceType = Span<T>; 261 262 // This namespace contains no types. It prevents functions defined in it from 263 // being found by ADL. 264 namespace adl_barrier { 265 266 template <class Needle, class... Ts> 267 constexpr size_t Find(Needle, Needle, Ts...) { 268 static_assert(!Contains<Needle, Ts...>(), "Duplicate element type"); 269 return 0; 270 } 271 272 template <class Needle, class T, class... Ts> 273 constexpr size_t Find(Needle, T, Ts...) { 274 return adl_barrier::Find(Needle(), Ts()...) + 1; 275 } 276 277 constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); } 278 279 // Returns `q * m` for the smallest `q` such that `q * m >= n`. 280 // Requires: `m` is a power of two. It's enforced by IsLegalElementType below. 281 constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); } 282 283 constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; } 284 285 constexpr size_t Max(size_t a) { return a; } 286 287 template <class... Ts> 288 constexpr size_t Max(size_t a, size_t b, Ts... rest) { 289 return adl_barrier::Max(b < a ? a : b, rest...); 290 } 291 292 template <class T> 293 std::string TypeName() { 294 std::string out; 295 int status = 0; 296 char* demangled = nullptr; 297 #ifdef ABSL_INTERNAL_HAS_CXA_DEMANGLE 298 demangled = abi::__cxa_demangle(typeid(T).name(), nullptr, nullptr, &status); 299 #endif 300 if (status == 0 && demangled != nullptr) { // Demangling succeeded. 301 absl::StrAppend(&out, "<", demangled, ">"); 302 free(demangled); 303 } else { 304 #if defined(__GXX_RTTI) || defined(_CPPRTTI) 305 absl::StrAppend(&out, "<", typeid(T).name(), ">"); 306 #endif 307 } 308 return out; 309 } 310 311 } // namespace adl_barrier 312 313 template <bool C> 314 using EnableIf = typename std::enable_if<C, int>::type; 315 316 // Can `T` be a template argument of `Layout`? 317 template <class T> 318 using IsLegalElementType = std::integral_constant< 319 bool, !std::is_reference<T>::value && !std::is_volatile<T>::value && 320 !std::is_reference<typename Type<T>::type>::value && 321 !std::is_volatile<typename Type<T>::type>::value && 322 adl_barrier::IsPow2(AlignOf<T>::value)>; 323 324 template <class Elements, class SizeSeq, class OffsetSeq> 325 class LayoutImpl; 326 327 // Public base class of `Layout` and the result type of `Layout::Partial()`. 328 // 329 // `Elements...` contains all template arguments of `Layout` that created this 330 // instance. 331 // 332 // `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is the number of arguments 333 // passed to `Layout::Partial()` or `Layout::Layout()`. 334 // 335 // `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is 336 // `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we 337 // can compute offsets). 338 template <class... Elements, size_t... SizeSeq, size_t... OffsetSeq> 339 class LayoutImpl<std::tuple<Elements...>, absl::index_sequence<SizeSeq...>, 340 absl::index_sequence<OffsetSeq...>> { 341 private: 342 static_assert(sizeof...(Elements) > 0, "At least one field is required"); 343 static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value, 344 "Invalid element type (see IsLegalElementType)"); 345 346 enum { 347 NumTypes = sizeof...(Elements), 348 NumSizes = sizeof...(SizeSeq), 349 NumOffsets = sizeof...(OffsetSeq), 350 }; 351 352 // These are guaranteed by `Layout`. 353 static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1), 354 "Internal error"); 355 static_assert(NumTypes > 0, "Internal error"); 356 357 // Returns the index of `T` in `Elements...`. Results in a compilation error 358 // if `Elements...` doesn't contain exactly one instance of `T`. 359 template <class T> 360 static constexpr size_t ElementIndex() { 361 static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(), 362 "Type not found"); 363 return adl_barrier::Find(Type<T>(), 364 Type<typename Type<Elements>::type>()...); 365 } 366 367 template <size_t N> 368 using ElementAlignment = 369 AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>; 370 371 public: 372 // Element types of all arrays packed in a tuple. 373 using ElementTypes = std::tuple<typename Type<Elements>::type...>; 374 375 // Element type of the Nth array. 376 template <size_t N> 377 using ElementType = typename std::tuple_element<N, ElementTypes>::type; 378 379 constexpr explicit LayoutImpl(IntToSize<SizeSeq>... sizes) 380 : size_{sizes...} {} 381 382 // Alignment of the layout, equal to the strictest alignment of all elements. 383 // All pointers passed to the methods of layout must be aligned to this value. 384 static constexpr size_t Alignment() { 385 return adl_barrier::Max(AlignOf<Elements>::value...); 386 } 387 388 // Offset in bytes of the Nth array. 389 // 390 // // int[3], 4 bytes of padding, double[4]. 391 // Layout<int, double> x(3, 4); 392 // assert(x.Offset<0>() == 0); // The ints starts from 0. 393 // assert(x.Offset<1>() == 16); // The doubles starts from 16. 394 // 395 // Requires: `N <= NumSizes && N < sizeof...(Ts)`. 396 template <size_t N, EnableIf<N == 0> = 0> 397 constexpr size_t Offset() const { 398 return 0; 399 } 400 401 template <size_t N, EnableIf<N != 0> = 0> 402 constexpr size_t Offset() const { 403 static_assert(N < NumOffsets, "Index out of bounds"); 404 return adl_barrier::Align( 405 Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1], 406 ElementAlignment<N>::value); 407 } 408 409 // Offset in bytes of the array with the specified element type. There must 410 // be exactly one such array and its zero-based index must be at most 411 // `NumSizes`. 412 // 413 // // int[3], 4 bytes of padding, double[4]. 414 // Layout<int, double> x(3, 4); 415 // assert(x.Offset<int>() == 0); // The ints starts from 0. 416 // assert(x.Offset<double>() == 16); // The doubles starts from 16. 417 template <class T> 418 constexpr size_t Offset() const { 419 return Offset<ElementIndex<T>()>(); 420 } 421 422 // Offsets in bytes of all arrays for which the offsets are known. 423 constexpr std::array<size_t, NumOffsets> Offsets() const { 424 return {{Offset<OffsetSeq>()...}}; 425 } 426 427 // The number of elements in the Nth array. This is the Nth argument of 428 // `Layout::Partial()` or `Layout::Layout()` (zero-based). 429 // 430 // // int[3], 4 bytes of padding, double[4]. 431 // Layout<int, double> x(3, 4); 432 // assert(x.Size<0>() == 3); 433 // assert(x.Size<1>() == 4); 434 // 435 // Requires: `N < NumSizes`. 436 template <size_t N> 437 constexpr size_t Size() const { 438 static_assert(N < NumSizes, "Index out of bounds"); 439 return size_[N]; 440 } 441 442 // The number of elements in the array with the specified element type. 443 // There must be exactly one such array and its zero-based index must be 444 // at most `NumSizes`. 445 // 446 // // int[3], 4 bytes of padding, double[4]. 447 // Layout<int, double> x(3, 4); 448 // assert(x.Size<int>() == 3); 449 // assert(x.Size<double>() == 4); 450 template <class T> 451 constexpr size_t Size() const { 452 return Size<ElementIndex<T>()>(); 453 } 454 455 // The number of elements of all arrays for which they are known. 456 constexpr std::array<size_t, NumSizes> Sizes() const { 457 return {{Size<SizeSeq>()...}}; 458 } 459 460 // Pointer to the beginning of the Nth array. 461 // 462 // `Char` must be `[const] [signed|unsigned] char`. 463 // 464 // // int[3], 4 bytes of padding, double[4]. 465 // Layout<int, double> x(3, 4); 466 // unsigned char* p = new unsigned char[x.AllocSize()]; 467 // int* ints = x.Pointer<0>(p); 468 // double* doubles = x.Pointer<1>(p); 469 // 470 // Requires: `N <= NumSizes && N < sizeof...(Ts)`. 471 // Requires: `p` is aligned to `Alignment()`. 472 template <size_t N, class Char> 473 CopyConst<Char, ElementType<N>>* Pointer(Char* p) const { 474 using C = typename std::remove_const<Char>::type; 475 static_assert( 476 std::is_same<C, char>() || std::is_same<C, unsigned char>() || 477 std::is_same<C, signed char>(), 478 "The argument must be a pointer to [const] [signed|unsigned] char"); 479 constexpr size_t alignment = Alignment(); 480 (void)alignment; 481 assert(reinterpret_cast<uintptr_t>(p) % alignment == 0); 482 return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>()); 483 } 484 485 // Pointer to the beginning of the array with the specified element type. 486 // There must be exactly one such array and its zero-based index must be at 487 // most `NumSizes`. 488 // 489 // `Char` must be `[const] [signed|unsigned] char`. 490 // 491 // // int[3], 4 bytes of padding, double[4]. 492 // Layout<int, double> x(3, 4); 493 // unsigned char* p = new unsigned char[x.AllocSize()]; 494 // int* ints = x.Pointer<int>(p); 495 // double* doubles = x.Pointer<double>(p); 496 // 497 // Requires: `p` is aligned to `Alignment()`. 498 template <class T, class Char> 499 CopyConst<Char, T>* Pointer(Char* p) const { 500 return Pointer<ElementIndex<T>()>(p); 501 } 502 503 // Pointers to all arrays for which pointers are known. 504 // 505 // `Char` must be `[const] [signed|unsigned] char`. 506 // 507 // // int[3], 4 bytes of padding, double[4]. 508 // Layout<int, double> x(3, 4); 509 // unsigned char* p = new unsigned char[x.AllocSize()]; 510 // 511 // int* ints; 512 // double* doubles; 513 // std::tie(ints, doubles) = x.Pointers(p); 514 // 515 // Requires: `p` is aligned to `Alignment()`. 516 // 517 // Note: We're not using ElementType alias here because it does not compile 518 // under MSVC. 519 template <class Char> 520 std::tuple<CopyConst< 521 Char, typename std::tuple_element<OffsetSeq, ElementTypes>::type>*...> 522 Pointers(Char* p) const { 523 return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>( 524 Pointer<OffsetSeq>(p)...); 525 } 526 527 // The Nth array. 528 // 529 // `Char` must be `[const] [signed|unsigned] char`. 530 // 531 // // int[3], 4 bytes of padding, double[4]. 532 // Layout<int, double> x(3, 4); 533 // unsigned char* p = new unsigned char[x.AllocSize()]; 534 // Span<int> ints = x.Slice<0>(p); 535 // Span<double> doubles = x.Slice<1>(p); 536 // 537 // Requires: `N < NumSizes`. 538 // Requires: `p` is aligned to `Alignment()`. 539 template <size_t N, class Char> 540 SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const { 541 return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>()); 542 } 543 544 // The array with the specified element type. There must be exactly one 545 // such array and its zero-based index must be less than `NumSizes`. 546 // 547 // `Char` must be `[const] [signed|unsigned] char`. 548 // 549 // // int[3], 4 bytes of padding, double[4]. 550 // Layout<int, double> x(3, 4); 551 // unsigned char* p = new unsigned char[x.AllocSize()]; 552 // Span<int> ints = x.Slice<int>(p); 553 // Span<double> doubles = x.Slice<double>(p); 554 // 555 // Requires: `p` is aligned to `Alignment()`. 556 template <class T, class Char> 557 SliceType<CopyConst<Char, T>> Slice(Char* p) const { 558 return Slice<ElementIndex<T>()>(p); 559 } 560 561 // All arrays with known sizes. 562 // 563 // `Char` must be `[const] [signed|unsigned] char`. 564 // 565 // // int[3], 4 bytes of padding, double[4]. 566 // Layout<int, double> x(3, 4); 567 // unsigned char* p = new unsigned char[x.AllocSize()]; 568 // 569 // Span<int> ints; 570 // Span<double> doubles; 571 // std::tie(ints, doubles) = x.Slices(p); 572 // 573 // Requires: `p` is aligned to `Alignment()`. 574 // 575 // Note: We're not using ElementType alias here because it does not compile 576 // under MSVC. 577 template <class Char> 578 std::tuple<SliceType<CopyConst< 579 Char, typename std::tuple_element<SizeSeq, ElementTypes>::type>>...> 580 Slices(Char* p) const { 581 // Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63875 (fixed 582 // in 6.1). 583 (void)p; 584 return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>( 585 Slice<SizeSeq>(p)...); 586 } 587 588 // The size of the allocation that fits all arrays. 589 // 590 // // int[3], 4 bytes of padding, double[4]. 591 // Layout<int, double> x(3, 4); 592 // unsigned char* p = new unsigned char[x.AllocSize()]; // 48 bytes 593 // 594 // Requires: `NumSizes == sizeof...(Ts)`. 595 constexpr size_t AllocSize() const { 596 static_assert(NumTypes == NumSizes, "You must specify sizes of all fields"); 597 return Offset<NumTypes - 1>() + 598 SizeOf<ElementType<NumTypes - 1>>() * size_[NumTypes - 1]; 599 } 600 601 // If built with --config=asan, poisons padding bytes (if any) in the 602 // allocation. The pointer must point to a memory block at least 603 // `AllocSize()` bytes in length. 604 // 605 // `Char` must be `[const] [signed|unsigned] char`. 606 // 607 // Requires: `p` is aligned to `Alignment()`. 608 template <class Char, size_t N = NumOffsets - 1, EnableIf<N == 0> = 0> 609 void PoisonPadding(const Char* p) const { 610 Pointer<0>(p); // verify the requirements on `Char` and `p` 611 } 612 613 template <class Char, size_t N = NumOffsets - 1, EnableIf<N != 0> = 0> 614 void PoisonPadding(const Char* p) const { 615 static_assert(N < NumOffsets, "Index out of bounds"); 616 (void)p; 617 #ifdef ADDRESS_SANITIZER 618 PoisonPadding<Char, N - 1>(p); 619 // The `if` is an optimization. It doesn't affect the observable behaviour. 620 if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) { 621 size_t start = 622 Offset<N - 1>() + SizeOf<ElementType<N - 1>>() * size_[N - 1]; 623 ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start); 624 } 625 #endif 626 } 627 628 // Human-readable description of the memory layout. Useful for debugging. 629 // Slow. 630 // 631 // // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed 632 // // by an unknown number of doubles. 633 // auto x = Layout<char, int, double>::Partial(5, 3); 634 // assert(x.DebugString() == 635 // "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)"); 636 // 637 // Each field is in the following format: @offset<type>(sizeof)[size] (<type> 638 // may be missing depending on the target platform). For example, 639 // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each 640 // int is 4 bytes, and we have 3 of those ints. The size of the last field may 641 // be missing (as in the example above). Only fields with known offsets are 642 // described. Type names may differ across platforms: one compiler might 643 // produce "unsigned*" where another produces "unsigned int *". 644 std::string DebugString() const { 645 const auto offsets = Offsets(); 646 const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>()...}; 647 const std::string types[] = { 648 adl_barrier::TypeName<ElementType<OffsetSeq>>()...}; 649 std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")"); 650 for (size_t i = 0; i != NumOffsets - 1; ++i) { 651 absl::StrAppend(&res, "[", size_[i], "]; @", offsets[i + 1], types[i + 1], 652 "(", sizes[i + 1], ")"); 653 } 654 // NumSizes is a constant that may be zero. Some compilers cannot see that 655 // inside the if statement "size_[NumSizes - 1]" must be valid. 656 int last = static_cast<int>(NumSizes) - 1; 657 if (NumTypes == NumSizes && last >= 0) { 658 absl::StrAppend(&res, "[", size_[last], "]"); 659 } 660 return res; 661 } 662 663 private: 664 // Arguments of `Layout::Partial()` or `Layout::Layout()`. 665 size_t size_[NumSizes > 0 ? NumSizes : 1]; 666 }; 667 668 template <size_t NumSizes, class... Ts> 669 using LayoutType = LayoutImpl< 670 std::tuple<Ts...>, absl::make_index_sequence<NumSizes>, 671 absl::make_index_sequence<adl_barrier::Min(sizeof...(Ts), NumSizes + 1)>>; 672 673 } // namespace internal_layout 674 675 // Descriptor of arrays of various types and sizes laid out in memory one after 676 // another. See the top of the file for documentation. 677 // 678 // Check out the public API of internal_layout::LayoutImpl above. The type is 679 // internal to the library but its methods are public, and they are inherited 680 // by `Layout`. 681 template <class... Ts> 682 class Layout : public internal_layout::LayoutType<sizeof...(Ts), Ts...> { 683 public: 684 static_assert(sizeof...(Ts) > 0, "At least one field is required"); 685 static_assert( 686 absl::conjunction<internal_layout::IsLegalElementType<Ts>...>::value, 687 "Invalid element type (see IsLegalElementType)"); 688 689 // The result type of `Partial()` with `NumSizes` arguments. 690 template <size_t NumSizes> 691 using PartialType = internal_layout::LayoutType<NumSizes, Ts...>; 692 693 // `Layout` knows the element types of the arrays we want to lay out in 694 // memory but not the number of elements in each array. 695 // `Partial(size1, ..., sizeN)` allows us to specify the latter. The 696 // resulting immutable object can be used to obtain pointers to the 697 // individual arrays. 698 // 699 // It's allowed to pass fewer array sizes than the number of arrays. E.g., 700 // if all you need is to the offset of the second array, you only need to 701 // pass one argument -- the number of elements in the first array. 702 // 703 // // int[3] followed by 4 bytes of padding and an unknown number of 704 // // doubles. 705 // auto x = Layout<int, double>::Partial(3); 706 // // doubles start at byte 16. 707 // assert(x.Offset<1>() == 16); 708 // 709 // If you know the number of elements in all arrays, you can still call 710 // `Partial()` but it's more convenient to use the constructor of `Layout`. 711 // 712 // Layout<int, double> x(3, 5); 713 // 714 // Note: The sizes of the arrays must be specified in number of elements, 715 // not in bytes. 716 // 717 // Requires: `sizeof...(Sizes) <= sizeof...(Ts)`. 718 // Requires: all arguments are convertible to `size_t`. 719 template <class... Sizes> 720 static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) { 721 static_assert(sizeof...(Sizes) <= sizeof...(Ts), ""); 722 return PartialType<sizeof...(Sizes)>(absl::forward<Sizes>(sizes)...); 723 } 724 725 // Creates a layout with the sizes of all arrays specified. If you know 726 // only the sizes of the first N arrays (where N can be zero), you can use 727 // `Partial()` defined above. The constructor is essentially equivalent to 728 // calling `Partial()` and passing in all array sizes; the constructor is 729 // provided as a convenient abbreviation. 730 // 731 // Note: The sizes of the arrays must be specified in number of elements, 732 // not in bytes. 733 constexpr explicit Layout(internal_layout::TypeToSize<Ts>... sizes) 734 : internal_layout::LayoutType<sizeof...(Ts), Ts...>(sizes...) {} 735 }; 736 737 } // namespace container_internal 738 ABSL_NAMESPACE_END 739 } // namespace absl 740 741 #endif // ABSL_CONTAINER_INTERNAL_LAYOUT_H_ 742