• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
2#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
3
4// Generate stack tracer for aarch64
5
6#if defined(__linux__)
7#include <sys/mman.h>
8#include <ucontext.h>
9#include <unistd.h>
10#endif
11
12#include <atomic>
13#include <cassert>
14#include <cstdint>
15#include <iostream>
16
17#include "absl/base/attributes.h"
18#include "absl/debugging/internal/address_is_readable.h"
19#include "absl/debugging/internal/vdso_support.h"  // a no-op on non-elf or non-glibc systems
20#include "absl/debugging/stacktrace.h"
21
22static const uintptr_t kUnknownFrameSize = 0;
23
24#if defined(__linux__)
25// Returns the address of the VDSO __kernel_rt_sigreturn function, if present.
26static const unsigned char* GetKernelRtSigreturnAddress() {
27  constexpr uintptr_t kImpossibleAddress = 1;
28  ABSL_CONST_INIT static std::atomic<uintptr_t> memoized{kImpossibleAddress};
29  uintptr_t address = memoized.load(std::memory_order_relaxed);
30  if (address != kImpossibleAddress) {
31    return reinterpret_cast<const unsigned char*>(address);
32  }
33
34  address = reinterpret_cast<uintptr_t>(nullptr);
35
36#ifdef ABSL_HAVE_VDSO_SUPPORT
37  absl::debugging_internal::VDSOSupport vdso;
38  if (vdso.IsPresent()) {
39    absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info;
40    if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", STT_FUNC,
41                           &symbol_info) ||
42        symbol_info.address == nullptr) {
43      // Unexpected: VDSO is present, yet the expected symbol is missing
44      // or null.
45      assert(false && "VDSO is present, but doesn't have expected symbol");
46    } else {
47      if (reinterpret_cast<uintptr_t>(symbol_info.address) !=
48          kImpossibleAddress) {
49        address = reinterpret_cast<uintptr_t>(symbol_info.address);
50      } else {
51        assert(false && "VDSO returned invalid address");
52      }
53    }
54  }
55#endif
56
57  memoized.store(address, std::memory_order_relaxed);
58  return reinterpret_cast<const unsigned char*>(address);
59}
60#endif  // __linux__
61
62// Compute the size of a stack frame in [low..high).  We assume that
63// low < high.  Return size of kUnknownFrameSize.
64template<typename T>
65static inline uintptr_t ComputeStackFrameSize(const T* low,
66                                              const T* high) {
67  const char* low_char_ptr = reinterpret_cast<const char *>(low);
68  const char* high_char_ptr = reinterpret_cast<const char *>(high);
69  return low < high ? high_char_ptr - low_char_ptr : kUnknownFrameSize;
70}
71
72// Given a pointer to a stack frame, locate and return the calling
73// stackframe, or return null if no stackframe can be found. Perform sanity
74// checks (the strictness of which is controlled by the boolean parameter
75// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
76template<bool STRICT_UNWINDING, bool WITH_CONTEXT>
77static void **NextStackFrame(void **old_frame_pointer, const void *uc) {
78  void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer);
79  bool check_frame_size = true;
80
81#if defined(__linux__)
82  if (WITH_CONTEXT && uc != nullptr) {
83    // Check to see if next frame's return address is __kernel_rt_sigreturn.
84    if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) {
85      const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
86      // old_frame_pointer[0] is not suitable for unwinding, look at
87      // ucontext to discover frame pointer before signal.
88      void **const pre_signal_frame_pointer =
89          reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]);
90
91      // Check that alleged frame pointer is actually readable. This is to
92      // prevent "double fault" in case we hit the first fault due to e.g.
93      // stack corruption.
94      if (!absl::debugging_internal::AddressIsReadable(
95              pre_signal_frame_pointer))
96        return nullptr;
97
98      // Alleged frame pointer is readable, use it for further unwinding.
99      new_frame_pointer = pre_signal_frame_pointer;
100
101      // Skip frame size check if we return from a signal. We may be using a
102      // an alternate stack for signals.
103      check_frame_size = false;
104    }
105  }
106#endif
107
108  // aarch64 ABI requires stack pointer to be 16-byte-aligned.
109  if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 15) != 0)
110    return nullptr;
111
112  // Check frame size.  In strict mode, we assume frames to be under
113  // 100,000 bytes.  In non-strict mode, we relax the limit to 1MB.
114  if (check_frame_size) {
115    const uintptr_t max_size = STRICT_UNWINDING ? 100000 : 1000000;
116    const uintptr_t frame_size =
117        ComputeStackFrameSize(old_frame_pointer, new_frame_pointer);
118    if (frame_size == kUnknownFrameSize || frame_size > max_size)
119      return nullptr;
120  }
121
122  return new_frame_pointer;
123}
124
125template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
126static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
127                      const void *ucp, int *min_dropped_frames) {
128#ifdef __GNUC__
129  void **frame_pointer = reinterpret_cast<void**>(__builtin_frame_address(0));
130#else
131# error reading stack point not yet supported on this platform.
132#endif
133
134  skip_count++;    // Skip the frame for this function.
135  int n = 0;
136
137  // The frame pointer points to low address of a frame.  The first 64-bit
138  // word of a frame points to the next frame up the call chain, which normally
139  // is just after the high address of the current frame.  The second word of
140  // a frame contains return adress of to the caller.   To find a pc value
141  // associated with the current frame, we need to go down a level in the call
142  // chain.  So we remember return the address of the last frame seen.  This
143  // does not work for the first stack frame, which belongs to UnwindImp() but
144  // we skip the frame for UnwindImp() anyway.
145  void* prev_return_address = nullptr;
146
147  while (frame_pointer && n < max_depth) {
148    // The absl::GetStackFrames routine is called when we are in some
149    // informational context (the failure signal handler for example).
150    // Use the non-strict unwinding rules to produce a stack trace
151    // that is as complete as possible (even if it contains a few bogus
152    // entries in some rare cases).
153    void **next_frame_pointer =
154        NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp);
155
156    if (skip_count > 0) {
157      skip_count--;
158    } else {
159      result[n] = prev_return_address;
160      if (IS_STACK_FRAMES) {
161        sizes[n] = ComputeStackFrameSize(frame_pointer, next_frame_pointer);
162      }
163      n++;
164    }
165    prev_return_address = frame_pointer[1];
166    frame_pointer = next_frame_pointer;
167  }
168  if (min_dropped_frames != nullptr) {
169    // Implementation detail: we clamp the max of frames we are willing to
170    // count, so as not to spend too much time in the loop below.
171    const int kMaxUnwind = 200;
172    int j = 0;
173    for (; frame_pointer != nullptr && j < kMaxUnwind; j++) {
174      frame_pointer =
175          NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp);
176    }
177    *min_dropped_frames = j;
178  }
179  return n;
180}
181
182namespace absl {
183ABSL_NAMESPACE_BEGIN
184namespace debugging_internal {
185bool StackTraceWorksForTest() {
186  return true;
187}
188}  // namespace debugging_internal
189ABSL_NAMESPACE_END
190}  // namespace absl
191
192#endif  // ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
193