1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
16 #define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
17
18 #include <cassert>
19 #include <cmath>
20 #include <istream>
21 #include <limits>
22 #include <numeric>
23 #include <type_traits>
24 #include <utility>
25 #include <vector>
26
27 #include "absl/random/bernoulli_distribution.h"
28 #include "absl/random/internal/iostream_state_saver.h"
29 #include "absl/random/uniform_int_distribution.h"
30
31 namespace absl {
32 ABSL_NAMESPACE_BEGIN
33
34 // absl::discrete_distribution
35 //
36 // A discrete distribution produces random integers i, where 0 <= i < n
37 // distributed according to the discrete probability function:
38 //
39 // P(i|p0,...,pn−1)=pi
40 //
41 // This class is an implementation of discrete_distribution (see
42 // [rand.dist.samp.discrete]).
43 //
44 // The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
45 // absl::discrete_distribution takes O(N) time to precompute the probabilities
46 // (where N is the number of possible outcomes in the distribution) at
47 // construction, and then takes O(1) time for each variate generation. Many
48 // other implementations also take O(N) time to construct an ordered sequence of
49 // partial sums, plus O(log N) time per variate to binary search.
50 //
51 template <typename IntType = int>
52 class discrete_distribution {
53 public:
54 using result_type = IntType;
55
56 class param_type {
57 public:
58 using distribution_type = discrete_distribution;
59
param_type()60 param_type() { init(); }
61
62 template <typename InputIterator>
param_type(InputIterator begin,InputIterator end)63 explicit param_type(InputIterator begin, InputIterator end)
64 : p_(begin, end) {
65 init();
66 }
67
param_type(std::initializer_list<double> weights)68 explicit param_type(std::initializer_list<double> weights) : p_(weights) {
69 init();
70 }
71
72 template <class UnaryOperation>
param_type(size_t nw,double xmin,double xmax,UnaryOperation fw)73 explicit param_type(size_t nw, double xmin, double xmax,
74 UnaryOperation fw) {
75 if (nw > 0) {
76 p_.reserve(nw);
77 double delta = (xmax - xmin) / static_cast<double>(nw);
78 assert(delta > 0);
79 double t = delta * 0.5;
80 for (size_t i = 0; i < nw; ++i) {
81 p_.push_back(fw(xmin + i * delta + t));
82 }
83 }
84 init();
85 }
86
probabilities()87 const std::vector<double>& probabilities() const { return p_; }
n()88 size_t n() const { return p_.size() - 1; }
89
90 friend bool operator==(const param_type& a, const param_type& b) {
91 return a.probabilities() == b.probabilities();
92 }
93
94 friend bool operator!=(const param_type& a, const param_type& b) {
95 return !(a == b);
96 }
97
98 private:
99 friend class discrete_distribution;
100
101 void init();
102
103 std::vector<double> p_; // normalized probabilities
104 std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs
105
106 static_assert(std::is_integral<result_type>::value,
107 "Class-template absl::discrete_distribution<> must be "
108 "parameterized using an integral type.");
109 };
110
discrete_distribution()111 discrete_distribution() : param_() {}
112
discrete_distribution(const param_type & p)113 explicit discrete_distribution(const param_type& p) : param_(p) {}
114
115 template <typename InputIterator>
discrete_distribution(InputIterator begin,InputIterator end)116 explicit discrete_distribution(InputIterator begin, InputIterator end)
117 : param_(begin, end) {}
118
discrete_distribution(std::initializer_list<double> weights)119 explicit discrete_distribution(std::initializer_list<double> weights)
120 : param_(weights) {}
121
122 template <class UnaryOperation>
discrete_distribution(size_t nw,double xmin,double xmax,UnaryOperation fw)123 explicit discrete_distribution(size_t nw, double xmin, double xmax,
124 UnaryOperation fw)
125 : param_(nw, xmin, xmax, std::move(fw)) {}
126
reset()127 void reset() {}
128
129 // generating functions
130 template <typename URBG>
operator()131 result_type operator()(URBG& g) { // NOLINT(runtime/references)
132 return (*this)(g, param_);
133 }
134
135 template <typename URBG>
136 result_type operator()(URBG& g, // NOLINT(runtime/references)
137 const param_type& p);
138
param()139 const param_type& param() const { return param_; }
param(const param_type & p)140 void param(const param_type& p) { param_ = p; }
141
result_type(min)142 result_type(min)() const { return 0; }
result_type(max)143 result_type(max)() const {
144 return static_cast<result_type>(param_.n());
145 } // inclusive
146
147 // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
148 // const std::vector<double>&.
probabilities()149 const std::vector<double>& probabilities() const {
150 return param_.probabilities();
151 }
152
153 friend bool operator==(const discrete_distribution& a,
154 const discrete_distribution& b) {
155 return a.param_ == b.param_;
156 }
157 friend bool operator!=(const discrete_distribution& a,
158 const discrete_distribution& b) {
159 return a.param_ != b.param_;
160 }
161
162 private:
163 param_type param_;
164 };
165
166 // --------------------------------------------------------------------------
167 // Implementation details only below
168 // --------------------------------------------------------------------------
169
170 namespace random_internal {
171
172 // Using the vector `*probabilities`, whose values are the weights or
173 // probabilities of an element being selected, constructs the proportional
174 // probabilities used by the discrete distribution. `*probabilities` will be
175 // scaled, if necessary, so that its entries sum to a value sufficiently close
176 // to 1.0.
177 std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
178 std::vector<double>* probabilities);
179
180 } // namespace random_internal
181
182 template <typename IntType>
init()183 void discrete_distribution<IntType>::param_type::init() {
184 if (p_.empty()) {
185 p_.push_back(1.0);
186 q_.emplace_back(1.0, 0);
187 } else {
188 assert(n() <= (std::numeric_limits<IntType>::max)());
189 q_ = random_internal::InitDiscreteDistribution(&p_);
190 }
191 }
192
193 template <typename IntType>
194 template <typename URBG>
195 typename discrete_distribution<IntType>::result_type
operator()196 discrete_distribution<IntType>::operator()(
197 URBG& g, // NOLINT(runtime/references)
198 const param_type& p) {
199 const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
200 const auto& q = p.q_[idx];
201 const bool selected = absl::bernoulli_distribution(q.first)(g);
202 return selected ? idx : static_cast<result_type>(q.second);
203 }
204
205 template <typename CharT, typename Traits, typename IntType>
206 std::basic_ostream<CharT, Traits>& operator<<(
207 std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
208 const discrete_distribution<IntType>& x) {
209 auto saver = random_internal::make_ostream_state_saver(os);
210 const auto& probabilities = x.param().probabilities();
211 os << probabilities.size();
212
213 os.precision(random_internal::stream_precision_helper<double>::kPrecision);
214 for (const auto& p : probabilities) {
215 os << os.fill() << p;
216 }
217 return os;
218 }
219
220 template <typename CharT, typename Traits, typename IntType>
221 std::basic_istream<CharT, Traits>& operator>>(
222 std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
223 discrete_distribution<IntType>& x) { // NOLINT(runtime/references)
224 using param_type = typename discrete_distribution<IntType>::param_type;
225 auto saver = random_internal::make_istream_state_saver(is);
226
227 size_t n;
228 std::vector<double> p;
229
230 is >> n;
231 if (is.fail()) return is;
232 if (n > 0) {
233 p.reserve(n);
234 for (IntType i = 0; i < n && !is.fail(); ++i) {
235 auto tmp = random_internal::read_floating_point<double>(is);
236 if (is.fail()) return is;
237 p.push_back(tmp);
238 }
239 }
240 x.param(param_type(p.begin(), p.end()));
241 return is;
242 }
243
244 ABSL_NAMESPACE_END
245 } // namespace absl
246
247 #endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
248