• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/internal/chi_square.h"
16 
17 #include <cmath>
18 
19 #include "absl/random/internal/distribution_test_util.h"
20 
21 namespace absl {
22 ABSL_NAMESPACE_BEGIN
23 namespace random_internal {
24 namespace {
25 
26 #if defined(__EMSCRIPTEN__)
27 // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found.
fma(double x,double y,double z)28 inline double fma(double x, double y, double z) {
29   return (x * y) + z;
30 }
31 #endif
32 
33 // Use Horner's method to evaluate a polynomial.
34 template <typename T, unsigned N>
EvaluatePolynomial(T x,const T (& poly)[N])35 inline T EvaluatePolynomial(T x, const T (&poly)[N]) {
36 #if !defined(__EMSCRIPTEN__)
37   using std::fma;
38 #endif
39   T p = poly[N - 1];
40   for (unsigned i = 2; i <= N; i++) {
41     p = fma(p, x, poly[N - i]);
42   }
43   return p;
44 }
45 
46 static constexpr int kLargeDOF = 150;
47 
48 // Returns the probability of a normal z-value.
49 //
50 // Adapted from the POZ function in:
51 //     Ibbetson D, Algorithm 209
52 //     Collected Algorithms of the CACM 1963 p. 616
53 //
POZ(double z)54 double POZ(double z) {
55   static constexpr double kP1[] = {
56       0.797884560593,  -0.531923007300, 0.319152932694,
57       -0.151968751364, 0.059054035642,  -0.019198292004,
58       0.005198775019,  -0.001075204047, 0.000124818987,
59   };
60   static constexpr double kP2[] = {
61       0.999936657524,  0.000535310849,  -0.002141268741, 0.005353579108,
62       -0.009279453341, 0.011630447319,  -0.010557625006, 0.006549791214,
63       -0.002034254874, -0.000794620820, 0.001390604284,  -0.000676904986,
64       -0.000019538132, 0.000152529290,  -0.000045255659,
65   };
66 
67   const double kZMax = 6.0;  // Maximum meaningful z-value.
68   if (z == 0.0) {
69     return 0.5;
70   }
71   double x;
72   double y = 0.5 * std::fabs(z);
73   if (y >= (kZMax * 0.5)) {
74     x = 1.0;
75   } else if (y < 1.0) {
76     double w = y * y;
77     x = EvaluatePolynomial(w, kP1) * y * 2.0;
78   } else {
79     y -= 2.0;
80     x = EvaluatePolynomial(y, kP2);
81   }
82   return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5);
83 }
84 
85 // Approximates the survival function of the normal distribution.
86 //
87 // Algorithm 26.2.18, from:
88 // [Abramowitz and Stegun, Handbook of Mathematical Functions,p.932]
89 // http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf
90 //
normal_survival(double z)91 double normal_survival(double z) {
92   // Maybe replace with the alternate formulation.
93   // 0.5 * erfc((x - mean)/(sqrt(2) * sigma))
94   static constexpr double kR[] = {
95       1.0, 0.196854, 0.115194, 0.000344, 0.019527,
96   };
97   double r = EvaluatePolynomial(z, kR);
98   r *= r;
99   return 0.5 / (r * r);
100 }
101 
102 }  // namespace
103 
104 // Calculates the critical chi-square value given degrees-of-freedom and a
105 // p-value, usually using bisection. Also known by the name CRITCHI.
ChiSquareValue(int dof,double p)106 double ChiSquareValue(int dof, double p) {
107   static constexpr double kChiEpsilon =
108       0.000001;  // Accuracy of the approximation.
109   static constexpr double kChiMax =
110       99999.0;  // Maximum chi-squared value.
111 
112   const double p_value = 1.0 - p;
113   if (dof < 1 || p_value > 1.0) {
114     return 0.0;
115   }
116 
117   if (dof > kLargeDOF) {
118     // For large degrees of freedom, use the normal approximation by
119     //     Wilson, E. B. and Hilferty, M. M. (1931)
120     //                     chi^2 - mean
121     //                Z = --------------
122     //                        stddev
123     const double z = InverseNormalSurvival(p_value);
124     const double mean = 1 - 2.0 / (9 * dof);
125     const double variance = 2.0 / (9 * dof);
126     // Cannot use this method if the variance is 0.
127     if (variance != 0) {
128       return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof;
129     }
130   }
131 
132   if (p_value <= 0.0) return kChiMax;
133 
134   // Otherwise search for the p value by bisection
135   double min_chisq = 0.0;
136   double max_chisq = kChiMax;
137   double current = dof / std::sqrt(p_value);
138   while ((max_chisq - min_chisq) > kChiEpsilon) {
139     if (ChiSquarePValue(current, dof) < p_value) {
140       max_chisq = current;
141     } else {
142       min_chisq = current;
143     }
144     current = (max_chisq + min_chisq) * 0.5;
145   }
146   return current;
147 }
148 
149 // Calculates the p-value (probability) of a given chi-square value
150 // and degrees of freedom.
151 //
152 // Adapted from the POCHISQ function from:
153 //     Hill, I. D. and Pike, M. C.  Algorithm 299
154 //     Collected Algorithms of the CACM 1963 p. 243
155 //
ChiSquarePValue(double chi_square,int dof)156 double ChiSquarePValue(double chi_square, int dof) {
157   static constexpr double kLogSqrtPi =
158       0.5723649429247000870717135;  // Log[Sqrt[Pi]]
159   static constexpr double kInverseSqrtPi =
160       0.5641895835477562869480795;  // 1/(Sqrt[Pi])
161 
162   // For large degrees of freedom, use the normal approximation by
163   //     Wilson, E. B. and Hilferty, M. M. (1931)
164   // Via Wikipedia:
165   //   By the Central Limit Theorem, because the chi-square distribution is the
166   //   sum of k independent random variables with finite mean and variance, it
167   //   converges to a normal distribution for large k.
168   if (dof > kLargeDOF) {
169     // Re-scale everything.
170     const double chi_square_scaled = std::pow(chi_square / dof, 1.0 / 3);
171     const double mean = 1 - 2.0 / (9 * dof);
172     const double variance = 2.0 / (9 * dof);
173     // If variance is 0, this method cannot be used.
174     if (variance != 0) {
175       const double z = (chi_square_scaled - mean) / std::sqrt(variance);
176       if (z > 0) {
177         return normal_survival(z);
178       } else if (z < 0) {
179         return 1.0 - normal_survival(-z);
180       } else {
181         return 0.5;
182       }
183     }
184   }
185 
186   // The chi square function is >= 0 for any degrees of freedom.
187   // In other words, probability that the chi square function >= 0 is 1.
188   if (chi_square <= 0.0) return 1.0;
189 
190   // If the degrees of freedom is zero, the chi square function is always 0 by
191   // definition. In other words, the probability that the chi square function
192   // is > 0 is zero (chi square values <= 0 have been filtered above).
193   if (dof < 1) return 0;
194 
195   auto capped_exp = [](double x) { return x < -20 ? 0.0 : std::exp(x); };
196   static constexpr double kBigX = 20;
197 
198   double a = 0.5 * chi_square;
199   const bool even = !(dof & 1);  // True if dof is an even number.
200   const double y = capped_exp(-a);
201   double s = even ? y : (2.0 * POZ(-std::sqrt(chi_square)));
202 
203   if (dof <= 2) {
204     return s;
205   }
206 
207   chi_square = 0.5 * (dof - 1.0);
208   double z = (even ? 1.0 : 0.5);
209   if (a > kBigX) {
210     double e = (even ? 0.0 : kLogSqrtPi);
211     double c = std::log(a);
212     while (z <= chi_square) {
213       e = std::log(z) + e;
214       s += capped_exp(c * z - a - e);
215       z += 1.0;
216     }
217     return s;
218   }
219 
220   double e = (even ? 1.0 : (kInverseSqrtPi / std::sqrt(a)));
221   double c = 0.0;
222   while (z <= chi_square) {
223     e = e * (a / z);
224     c = c + e;
225     z += 1.0;
226   }
227   return c * y + s;
228 }
229 
230 }  // namespace random_internal
231 ABSL_NAMESPACE_END
232 }  // namespace absl
233