• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/internal/generate_real.h"
16 
17 #include <cfloat>
18 #include <cstddef>
19 #include <cstdint>
20 #include <string>
21 
22 #include "gtest/gtest.h"
23 #include "absl/flags/flag.h"
24 #include "absl/numeric/bits.h"
25 
26 ABSL_FLAG(int64_t, absl_random_test_trials, 50000,
27           "Number of trials for the probability tests.");
28 
29 using absl::random_internal::GenerateNegativeTag;
30 using absl::random_internal::GeneratePositiveTag;
31 using absl::random_internal::GenerateRealFromBits;
32 using absl::random_internal::GenerateSignedTag;
33 
34 namespace {
35 
TEST(GenerateRealTest,U64ToFloat_Positive_NoZero_Test)36 TEST(GenerateRealTest, U64ToFloat_Positive_NoZero_Test) {
37   auto ToFloat = [](uint64_t a) {
38     return GenerateRealFromBits<float, GeneratePositiveTag, false>(a);
39   };
40   EXPECT_EQ(ToFloat(0x0000000000000000), 2.710505431e-20f);
41   EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f);
42   EXPECT_EQ(ToFloat(0x8000000000000000), 0.5);
43   EXPECT_EQ(ToFloat(0x8000000000000001), 0.5);
44   EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);
45 }
46 
TEST(GenerateRealTest,U64ToFloat_Positive_Zero_Test)47 TEST(GenerateRealTest, U64ToFloat_Positive_Zero_Test) {
48   auto ToFloat = [](uint64_t a) {
49     return GenerateRealFromBits<float, GeneratePositiveTag, true>(a);
50   };
51   EXPECT_EQ(ToFloat(0x0000000000000000), 0.0);
52   EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f);
53   EXPECT_EQ(ToFloat(0x8000000000000000), 0.5);
54   EXPECT_EQ(ToFloat(0x8000000000000001), 0.5);
55   EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);
56 }
57 
TEST(GenerateRealTest,U64ToFloat_Negative_NoZero_Test)58 TEST(GenerateRealTest, U64ToFloat_Negative_NoZero_Test) {
59   auto ToFloat = [](uint64_t a) {
60     return GenerateRealFromBits<float, GenerateNegativeTag, false>(a);
61   };
62   EXPECT_EQ(ToFloat(0x0000000000000000), -2.710505431e-20f);
63   EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f);
64   EXPECT_EQ(ToFloat(0x8000000000000000), -0.5);
65   EXPECT_EQ(ToFloat(0x8000000000000001), -0.5);
66   EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
67 }
68 
TEST(GenerateRealTest,U64ToFloat_Negative_Zero_Test)69 TEST(GenerateRealTest, U64ToFloat_Negative_Zero_Test) {
70   auto ToFloat = [](uint64_t a) {
71     return GenerateRealFromBits<float, GenerateNegativeTag, true>(a);
72   };
73   EXPECT_EQ(ToFloat(0x0000000000000000), 0.0);
74   EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f);
75   EXPECT_EQ(ToFloat(0x8000000000000000), -0.5);
76   EXPECT_EQ(ToFloat(0x8000000000000001), -0.5);
77   EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
78 }
79 
TEST(GenerateRealTest,U64ToFloat_Signed_NoZero_Test)80 TEST(GenerateRealTest, U64ToFloat_Signed_NoZero_Test) {
81   auto ToFloat = [](uint64_t a) {
82     return GenerateRealFromBits<float, GenerateSignedTag, false>(a);
83   };
84   EXPECT_EQ(ToFloat(0x0000000000000000), 5.421010862e-20f);
85   EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f);
86   EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 0.9999999404f);
87   EXPECT_EQ(ToFloat(0x8000000000000000), -5.421010862e-20f);
88   EXPECT_EQ(ToFloat(0x8000000000000001), -1.084202172e-19f);
89   EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
90 }
91 
TEST(GenerateRealTest,U64ToFloat_Signed_Zero_Test)92 TEST(GenerateRealTest, U64ToFloat_Signed_Zero_Test) {
93   auto ToFloat = [](uint64_t a) {
94     return GenerateRealFromBits<float, GenerateSignedTag, true>(a);
95   };
96   EXPECT_EQ(ToFloat(0x0000000000000000), 0);
97   EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f);
98   EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 0.9999999404f);
99   EXPECT_EQ(ToFloat(0x8000000000000000), 0);
100   EXPECT_EQ(ToFloat(0x8000000000000001), -1.084202172e-19f);
101   EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f);
102 }
103 
TEST(GenerateRealTest,U64ToFloat_Signed_Bias_Test)104 TEST(GenerateRealTest, U64ToFloat_Signed_Bias_Test) {
105   auto ToFloat = [](uint64_t a) {
106     return GenerateRealFromBits<float, GenerateSignedTag, true>(a, 1);
107   };
108   EXPECT_EQ(ToFloat(0x0000000000000000), 0);
109   EXPECT_EQ(ToFloat(0x0000000000000001), 2 * 1.084202172e-19f);
110   EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 2 * 0.9999999404f);
111   EXPECT_EQ(ToFloat(0x8000000000000000), 0);
112   EXPECT_EQ(ToFloat(0x8000000000000001), 2 * -1.084202172e-19f);
113   EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 2 * -0.9999999404f);
114 }
115 
TEST(GenerateRealTest,U64ToFloatTest)116 TEST(GenerateRealTest, U64ToFloatTest) {
117   auto ToFloat = [](uint64_t a) -> float {
118     return GenerateRealFromBits<float, GeneratePositiveTag, true>(a);
119   };
120 
121   EXPECT_EQ(ToFloat(0x0000000000000000), 0.0f);
122 
123   EXPECT_EQ(ToFloat(0x8000000000000000), 0.5f);
124   EXPECT_EQ(ToFloat(0x8000000000000001), 0.5f);
125   EXPECT_EQ(ToFloat(0x800000FFFFFFFFFF), 0.5f);
126   EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f);
127 
128   EXPECT_GT(ToFloat(0x0000000000000001), 0.0f);
129 
130   EXPECT_NE(ToFloat(0x7FFFFF0000000000), ToFloat(0x7FFFFEFFFFFFFFFF));
131 
132   EXPECT_LT(ToFloat(0xFFFFFFFFFFFFFFFF), 1.0f);
133   int32_t two_to_24 = 1 << 24;
134   EXPECT_EQ(static_cast<int32_t>(ToFloat(0xFFFFFFFFFFFFFFFF) * two_to_24),
135             two_to_24 - 1);
136   EXPECT_NE(static_cast<int32_t>(ToFloat(0xFFFFFFFFFFFFFFFF) * two_to_24 * 2),
137             two_to_24 * 2 - 1);
138   EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), ToFloat(0xFFFFFF0000000000));
139   EXPECT_NE(ToFloat(0xFFFFFFFFFFFFFFFF), ToFloat(0xFFFFFEFFFFFFFFFF));
140   EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), ToFloat(0x7FFFFF8000000000));
141   EXPECT_NE(ToFloat(0x7FFFFFFFFFFFFFFF), ToFloat(0x7FFFFF7FFFFFFFFF));
142   EXPECT_EQ(ToFloat(0x3FFFFFFFFFFFFFFF), ToFloat(0x3FFFFFC000000000));
143   EXPECT_NE(ToFloat(0x3FFFFFFFFFFFFFFF), ToFloat(0x3FFFFFBFFFFFFFFF));
144 
145   // For values where every bit counts, the values scale as multiples of the
146   // input.
147   for (int i = 0; i < 100; ++i) {
148     EXPECT_EQ(i * ToFloat(0x0000000000000001), ToFloat(i));
149   }
150 
151   // For each i: value generated from (1 << i).
152   float exp_values[64];
153   exp_values[63] = 0.5f;
154   for (int i = 62; i >= 0; --i) exp_values[i] = 0.5f * exp_values[i + 1];
155   constexpr uint64_t one = 1;
156   for (int i = 0; i < 64; ++i) {
157     EXPECT_EQ(ToFloat(one << i), exp_values[i]);
158     for (int j = 1; j < FLT_MANT_DIG && i - j >= 0; ++j) {
159       EXPECT_NE(exp_values[i] + exp_values[i - j], exp_values[i]);
160       EXPECT_EQ(ToFloat((one << i) + (one << (i - j))),
161                 exp_values[i] + exp_values[i - j]);
162     }
163     for (int j = FLT_MANT_DIG; i - j >= 0; ++j) {
164       EXPECT_EQ(exp_values[i] + exp_values[i - j], exp_values[i]);
165       EXPECT_EQ(ToFloat((one << i) + (one << (i - j))), exp_values[i]);
166     }
167   }
168 }
169 
TEST(GenerateRealTest,U64ToDouble_Positive_NoZero_Test)170 TEST(GenerateRealTest, U64ToDouble_Positive_NoZero_Test) {
171   auto ToDouble = [](uint64_t a) {
172     return GenerateRealFromBits<double, GeneratePositiveTag, false>(a);
173   };
174 
175   EXPECT_EQ(ToDouble(0x0000000000000000), 2.710505431213761085e-20);
176   EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);
177   EXPECT_EQ(ToDouble(0x0000000000000002), 1.084202172485504434e-19);
178   EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);
179   EXPECT_EQ(ToDouble(0x8000000000000001), 0.5);
180   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);
181 }
182 
TEST(GenerateRealTest,U64ToDouble_Positive_Zero_Test)183 TEST(GenerateRealTest, U64ToDouble_Positive_Zero_Test) {
184   auto ToDouble = [](uint64_t a) {
185     return GenerateRealFromBits<double, GeneratePositiveTag, true>(a);
186   };
187 
188   EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);
189   EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);
190   EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);
191   EXPECT_EQ(ToDouble(0x8000000000000001), 0.5);
192   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);
193 }
194 
TEST(GenerateRealTest,U64ToDouble_Negative_NoZero_Test)195 TEST(GenerateRealTest, U64ToDouble_Negative_NoZero_Test) {
196   auto ToDouble = [](uint64_t a) {
197     return GenerateRealFromBits<double, GenerateNegativeTag, false>(a);
198   };
199 
200   EXPECT_EQ(ToDouble(0x0000000000000000), -2.710505431213761085e-20);
201   EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20);
202   EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19);
203   EXPECT_EQ(ToDouble(0x8000000000000000), -0.5);
204   EXPECT_EQ(ToDouble(0x8000000000000001), -0.5);
205   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
206 }
207 
TEST(GenerateRealTest,U64ToDouble_Negative_Zero_Test)208 TEST(GenerateRealTest, U64ToDouble_Negative_Zero_Test) {
209   auto ToDouble = [](uint64_t a) {
210     return GenerateRealFromBits<double, GenerateNegativeTag, true>(a);
211   };
212 
213   EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);
214   EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20);
215   EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19);
216   EXPECT_EQ(ToDouble(0x8000000000000000), -0.5);
217   EXPECT_EQ(ToDouble(0x8000000000000001), -0.5);
218   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
219 }
220 
TEST(GenerateRealTest,U64ToDouble_Signed_NoZero_Test)221 TEST(GenerateRealTest, U64ToDouble_Signed_NoZero_Test) {
222   auto ToDouble = [](uint64_t a) {
223     return GenerateRealFromBits<double, GenerateSignedTag, false>(a);
224   };
225 
226   EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20);
227   EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19);
228   EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978);
229   EXPECT_EQ(ToDouble(0x8000000000000000), -5.42101086242752217004e-20);
230   EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19);
231   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
232 }
233 
TEST(GenerateRealTest,U64ToDouble_Signed_Zero_Test)234 TEST(GenerateRealTest, U64ToDouble_Signed_Zero_Test) {
235   auto ToDouble = [](uint64_t a) {
236     return GenerateRealFromBits<double, GenerateSignedTag, true>(a);
237   };
238   EXPECT_EQ(ToDouble(0x0000000000000000), 0);
239   EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19);
240   EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978);
241   EXPECT_EQ(ToDouble(0x8000000000000000), 0);
242   EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19);
243   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978);
244 }
245 
TEST(GenerateRealTest,U64ToDouble_GenerateSignedTag_Bias_Test)246 TEST(GenerateRealTest, U64ToDouble_GenerateSignedTag_Bias_Test) {
247   auto ToDouble = [](uint64_t a) {
248     return GenerateRealFromBits<double, GenerateSignedTag, true>(a, -1);
249   };
250   EXPECT_EQ(ToDouble(0x0000000000000000), 0);
251   EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19 / 2);
252   EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978 / 2);
253   EXPECT_EQ(ToDouble(0x8000000000000000), 0);
254   EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19 / 2);
255   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978 / 2);
256 }
257 
TEST(GenerateRealTest,U64ToDoubleTest)258 TEST(GenerateRealTest, U64ToDoubleTest) {
259   auto ToDouble = [](uint64_t a) {
260     return GenerateRealFromBits<double, GeneratePositiveTag, true>(a);
261   };
262 
263   EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);
264   EXPECT_EQ(ToDouble(0x0000000000000000), 0.0);
265 
266   EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20);
267   EXPECT_EQ(ToDouble(0x7fffffffffffffef), 0.499999999999999944489);
268   EXPECT_EQ(ToDouble(0x8000000000000000), 0.5);
269 
270   // For values > 0.5, RandU64ToDouble discards up to 11 bits. (64-53).
271   EXPECT_EQ(ToDouble(0x8000000000000001), 0.5);
272   EXPECT_EQ(ToDouble(0x80000000000007FF), 0.5);
273   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978);
274   EXPECT_NE(ToDouble(0x7FFFFFFFFFFFF800), ToDouble(0x7FFFFFFFFFFFF7FF));
275 
276   EXPECT_LT(ToDouble(0xFFFFFFFFFFFFFFFF), 1.0);
277   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), ToDouble(0xFFFFFFFFFFFFF800));
278   EXPECT_NE(ToDouble(0xFFFFFFFFFFFFFFFF), ToDouble(0xFFFFFFFFFFFFF7FF));
279   EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFC00));
280   EXPECT_NE(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFBFF));
281   EXPECT_EQ(ToDouble(0x3FFFFFFFFFFFFFFF), ToDouble(0x3FFFFFFFFFFFFE00));
282   EXPECT_NE(ToDouble(0x3FFFFFFFFFFFFFFF), ToDouble(0x3FFFFFFFFFFFFDFF));
283 
284   EXPECT_EQ(ToDouble(0x1000000000000001), 0.0625);
285   EXPECT_EQ(ToDouble(0x2000000000000001), 0.125);
286   EXPECT_EQ(ToDouble(0x3000000000000001), 0.1875);
287   EXPECT_EQ(ToDouble(0x4000000000000001), 0.25);
288   EXPECT_EQ(ToDouble(0x5000000000000001), 0.3125);
289   EXPECT_EQ(ToDouble(0x6000000000000001), 0.375);
290   EXPECT_EQ(ToDouble(0x7000000000000001), 0.4375);
291   EXPECT_EQ(ToDouble(0x8000000000000001), 0.5);
292   EXPECT_EQ(ToDouble(0x9000000000000001), 0.5625);
293   EXPECT_EQ(ToDouble(0xa000000000000001), 0.625);
294   EXPECT_EQ(ToDouble(0xb000000000000001), 0.6875);
295   EXPECT_EQ(ToDouble(0xc000000000000001), 0.75);
296   EXPECT_EQ(ToDouble(0xd000000000000001), 0.8125);
297   EXPECT_EQ(ToDouble(0xe000000000000001), 0.875);
298   EXPECT_EQ(ToDouble(0xf000000000000001), 0.9375);
299 
300   // Large powers of 2.
301   int64_t two_to_53 = int64_t{1} << 53;
302   EXPECT_EQ(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53),
303             two_to_53 - 1);
304   EXPECT_NE(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53 * 2),
305             two_to_53 * 2 - 1);
306 
307   // For values where every bit counts, the values scale as multiples of the
308   // input.
309   for (int i = 0; i < 100; ++i) {
310     EXPECT_EQ(i * ToDouble(0x0000000000000001), ToDouble(i));
311   }
312 
313   // For each i: value generated from (1 << i).
314   double exp_values[64];
315   exp_values[63] = 0.5;
316   for (int i = 62; i >= 0; --i) exp_values[i] = 0.5 * exp_values[i + 1];
317   constexpr uint64_t one = 1;
318   for (int i = 0; i < 64; ++i) {
319     EXPECT_EQ(ToDouble(one << i), exp_values[i]);
320     for (int j = 1; j < DBL_MANT_DIG && i - j >= 0; ++j) {
321       EXPECT_NE(exp_values[i] + exp_values[i - j], exp_values[i]);
322       EXPECT_EQ(ToDouble((one << i) + (one << (i - j))),
323                 exp_values[i] + exp_values[i - j]);
324     }
325     for (int j = DBL_MANT_DIG; i - j >= 0; ++j) {
326       EXPECT_EQ(exp_values[i] + exp_values[i - j], exp_values[i]);
327       EXPECT_EQ(ToDouble((one << i) + (one << (i - j))), exp_values[i]);
328     }
329   }
330 }
331 
TEST(GenerateRealTest,U64ToDoubleSignedTest)332 TEST(GenerateRealTest, U64ToDoubleSignedTest) {
333   auto ToDouble = [](uint64_t a) {
334     return GenerateRealFromBits<double, GenerateSignedTag, false>(a);
335   };
336 
337   EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20);
338   EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19);
339 
340   EXPECT_EQ(ToDouble(0x8000000000000000), -5.42101086242752217004e-20);
341   EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19);
342 
343   const double e_plus = ToDouble(0x0000000000000001);
344   const double e_minus = ToDouble(0x8000000000000001);
345   EXPECT_EQ(e_plus, 1.084202172485504434e-19);
346   EXPECT_EQ(e_minus, -1.084202172485504434e-19);
347 
348   EXPECT_EQ(ToDouble(0x3fffffffffffffef), 0.499999999999999944489);
349   EXPECT_EQ(ToDouble(0xbfffffffffffffef), -0.499999999999999944489);
350 
351   // For values > 0.5, RandU64ToDouble discards up to 10 bits. (63-53).
352   EXPECT_EQ(ToDouble(0x4000000000000000), 0.5);
353   EXPECT_EQ(ToDouble(0x4000000000000001), 0.5);
354   EXPECT_EQ(ToDouble(0x40000000000003FF), 0.5);
355 
356   EXPECT_EQ(ToDouble(0xC000000000000000), -0.5);
357   EXPECT_EQ(ToDouble(0xC000000000000001), -0.5);
358   EXPECT_EQ(ToDouble(0xC0000000000003FF), -0.5);
359 
360   EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFe), 0.999999999999999888978);
361   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFe), -0.999999999999999888978);
362 
363   EXPECT_NE(ToDouble(0x7FFFFFFFFFFFF800), ToDouble(0x7FFFFFFFFFFFF7FF));
364 
365   EXPECT_LT(ToDouble(0x7FFFFFFFFFFFFFFF), 1.0);
366   EXPECT_GT(ToDouble(0x7FFFFFFFFFFFFFFF), 0.9999999999);
367 
368   EXPECT_GT(ToDouble(0xFFFFFFFFFFFFFFFe), -1.0);
369   EXPECT_LT(ToDouble(0xFFFFFFFFFFFFFFFe), -0.999999999);
370 
371   EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFe), ToDouble(0xFFFFFFFFFFFFFC00));
372   EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFC00));
373   EXPECT_NE(ToDouble(0xFFFFFFFFFFFFFFFe), ToDouble(0xFFFFFFFFFFFFF3FF));
374   EXPECT_NE(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFF3FF));
375 
376   EXPECT_EQ(ToDouble(0x1000000000000001), 0.125);
377   EXPECT_EQ(ToDouble(0x2000000000000001), 0.25);
378   EXPECT_EQ(ToDouble(0x3000000000000001), 0.375);
379   EXPECT_EQ(ToDouble(0x4000000000000001), 0.5);
380   EXPECT_EQ(ToDouble(0x5000000000000001), 0.625);
381   EXPECT_EQ(ToDouble(0x6000000000000001), 0.75);
382   EXPECT_EQ(ToDouble(0x7000000000000001), 0.875);
383   EXPECT_EQ(ToDouble(0x7800000000000001), 0.9375);
384   EXPECT_EQ(ToDouble(0x7c00000000000001), 0.96875);
385   EXPECT_EQ(ToDouble(0x7e00000000000001), 0.984375);
386   EXPECT_EQ(ToDouble(0x7f00000000000001), 0.9921875);
387 
388   // 0x8000000000000000 ~= 0
389   EXPECT_EQ(ToDouble(0x9000000000000001), -0.125);
390   EXPECT_EQ(ToDouble(0xa000000000000001), -0.25);
391   EXPECT_EQ(ToDouble(0xb000000000000001), -0.375);
392   EXPECT_EQ(ToDouble(0xc000000000000001), -0.5);
393   EXPECT_EQ(ToDouble(0xd000000000000001), -0.625);
394   EXPECT_EQ(ToDouble(0xe000000000000001), -0.75);
395   EXPECT_EQ(ToDouble(0xf000000000000001), -0.875);
396 
397   // Large powers of 2.
398   int64_t two_to_53 = int64_t{1} << 53;
399   EXPECT_EQ(static_cast<int64_t>(ToDouble(0x7FFFFFFFFFFFFFFF) * two_to_53),
400             two_to_53 - 1);
401   EXPECT_EQ(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53),
402             -(two_to_53 - 1));
403 
404   EXPECT_NE(static_cast<int64_t>(ToDouble(0x7FFFFFFFFFFFFFFF) * two_to_53 * 2),
405             two_to_53 * 2 - 1);
406 
407   // For values where every bit counts, the values scale as multiples of the
408   // input.
409   for (int i = 1; i < 100; ++i) {
410     EXPECT_EQ(i * e_plus, ToDouble(i)) << i;
411     EXPECT_EQ(i * e_minus, ToDouble(0x8000000000000000 | i)) << i;
412   }
413 }
414 
TEST(GenerateRealTest,ExhaustiveFloat)415 TEST(GenerateRealTest, ExhaustiveFloat) {
416   auto ToFloat = [](uint64_t a) {
417     return GenerateRealFromBits<float, GeneratePositiveTag, true>(a);
418   };
419 
420   // Rely on RandU64ToFloat generating values from greatest to least when
421   // supplied with uint64_t values from greatest (0xfff...) to least (0x0).
422   // Thus, this algorithm stores the previous value, and if the new value is at
423   // greater than or equal to the previous value, then there is a collision in
424   // the generation algorithm.
425   //
426   // Use the computation below to convert the random value into a result:
427   //   double res = a() * (1.0f - sample) + b() * sample;
428   float last_f = 1.0, last_g = 2.0;
429   uint64_t f_collisions = 0, g_collisions = 0;
430   uint64_t f_unique = 0, g_unique = 0;
431   uint64_t total = 0;
432   auto count = [&](const float r) {
433     total++;
434     // `f` is mapped to the range [0, 1) (default)
435     const float f = 0.0f * (1.0f - r) + 1.0f * r;
436     if (f >= last_f) {
437       f_collisions++;
438     } else {
439       f_unique++;
440       last_f = f;
441     }
442     // `g` is mapped to the range [1, 2)
443     const float g = 1.0f * (1.0f - r) + 2.0f * r;
444     if (g >= last_g) {
445       g_collisions++;
446     } else {
447       g_unique++;
448       last_g = g;
449     }
450   };
451 
452   size_t limit = absl::GetFlag(FLAGS_absl_random_test_trials);
453 
454   // Generate all uint64_t which have unique floating point values.
455   // Counting down from 0xFFFFFFFFFFFFFFFFu ... 0x0u
456   uint64_t x = ~uint64_t(0);
457   for (; x != 0 && limit > 0;) {
458     constexpr int kDig = (64 - FLT_MANT_DIG);
459     // Set a decrement value & the next point at which to change
460     // the decrement value. By default these are 1, 0.
461     uint64_t dec = 1;
462     uint64_t chk = 0;
463 
464     // Adjust decrement and check value based on how many leading 0
465     // bits are set in the current value.
466     const int clz = absl::countl_zero(x);
467     if (clz < kDig) {
468       dec <<= (kDig - clz);
469       chk = (~uint64_t(0)) >> (clz + 1);
470     }
471     for (; x > chk && limit > 0; x -= dec) {
472       count(ToFloat(x));
473       --limit;
474     }
475   }
476 
477   static_assert(FLT_MANT_DIG == 24,
478                 "The float type is expected to have a 24 bit mantissa.");
479 
480   if (limit != 0) {
481     // There are between 2^28 and 2^29 unique values in the range [0, 1).  For
482     // the low values of x, there are 2^24 -1 unique values.  Once x > 2^24,
483     // there are 40 * 2^24 unique values. Thus:
484     // (2 + 4 + 8 ... + 2^23) + 40 * 2^23
485     EXPECT_LT(1 << 28, f_unique);
486     EXPECT_EQ((1 << 24) + 40 * (1 << 23) - 1, f_unique);
487     EXPECT_EQ(total, f_unique);
488     EXPECT_EQ(0, f_collisions);
489 
490     // Expect at least 2^23 unique values for the range [1, 2)
491     EXPECT_LE(1 << 23, g_unique);
492     EXPECT_EQ(total - g_unique, g_collisions);
493   }
494 }
495 
496 }  // namespace
497