1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: cord.h
17 // -----------------------------------------------------------------------------
18 //
19 // This file defines the `absl::Cord` data structure and operations on that data
20 // structure. A Cord is a string-like sequence of characters optimized for
21 // specific use cases. Unlike a `std::string`, which stores an array of
22 // contiguous characters, Cord data is stored in a structure consisting of
23 // separate, reference-counted "chunks." (Currently, this implementation is a
24 // tree structure, though that implementation may change.)
25 //
26 // Because a Cord consists of these chunks, data can be added to or removed from
27 // a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a
28 // `std::string`, a Cord can therefore accommodate data that changes over its
29 // lifetime, though it's not quite "mutable"; it can change only in the
30 // attachment, detachment, or rearrangement of chunks of its constituent data.
31 //
32 // A Cord provides some benefit over `std::string` under the following (albeit
33 // narrow) circumstances:
34 //
35 // * Cord data is designed to grow and shrink over a Cord's lifetime. Cord
36 // provides efficient insertions and deletions at the start and end of the
37 // character sequences, avoiding copies in those cases. Static data should
38 // generally be stored as strings.
39 // * External memory consisting of string-like data can be directly added to
40 // a Cord without requiring copies or allocations.
41 // * Cord data may be shared and copied cheaply. Cord provides a copy-on-write
42 // implementation and cheap sub-Cord operations. Copying a Cord is an O(1)
43 // operation.
44 //
45 // As a consequence to the above, Cord data is generally large. Small data
46 // should generally use strings, as construction of a Cord requires some
47 // overhead. Small Cords (<= 15 bytes) are represented inline, but most small
48 // Cords are expected to grow over their lifetimes.
49 //
50 // Note that because a Cord is made up of separate chunked data, random access
51 // to character data within a Cord is slower than within a `std::string`.
52 //
53 // Thread Safety
54 //
55 // Cord has the same thread-safety properties as many other types like
56 // std::string, std::vector<>, int, etc -- it is thread-compatible. In
57 // particular, if threads do not call non-const methods, then it is safe to call
58 // const methods without synchronization. Copying a Cord produces a new instance
59 // that can be used concurrently with the original in arbitrary ways.
60
61 #ifndef ABSL_STRINGS_CORD_H_
62 #define ABSL_STRINGS_CORD_H_
63
64 #include <algorithm>
65 #include <cstddef>
66 #include <cstdint>
67 #include <cstring>
68 #include <iosfwd>
69 #include <iterator>
70 #include <string>
71 #include <type_traits>
72
73 #include "absl/base/config.h"
74 #include "absl/base/internal/endian.h"
75 #include "absl/base/internal/per_thread_tls.h"
76 #include "absl/base/macros.h"
77 #include "absl/base/port.h"
78 #include "absl/container/inlined_vector.h"
79 #include "absl/functional/function_ref.h"
80 #include "absl/meta/type_traits.h"
81 #include "absl/strings/internal/cord_internal.h"
82 #include "absl/strings/internal/cord_rep_ring.h"
83 #include "absl/strings/internal/cord_rep_ring_reader.h"
84 #include "absl/strings/internal/cordz_functions.h"
85 #include "absl/strings/internal/cordz_info.h"
86 #include "absl/strings/internal/cordz_statistics.h"
87 #include "absl/strings/internal/cordz_update_scope.h"
88 #include "absl/strings/internal/cordz_update_tracker.h"
89 #include "absl/strings/internal/resize_uninitialized.h"
90 #include "absl/strings/internal/string_constant.h"
91 #include "absl/strings/string_view.h"
92 #include "absl/types/optional.h"
93
94 namespace absl {
95 ABSL_NAMESPACE_BEGIN
96 class Cord;
97 class CordTestPeer;
98 template <typename Releaser>
99 Cord MakeCordFromExternal(absl::string_view, Releaser&&);
100 void CopyCordToString(const Cord& src, std::string* dst);
101
102 // Cord
103 //
104 // A Cord is a sequence of characters, designed to be more efficient than a
105 // `std::string` in certain circumstances: namely, large string data that needs
106 // to change over its lifetime or shared, especially when such data is shared
107 // across API boundaries.
108 //
109 // A Cord stores its character data in a structure that allows efficient prepend
110 // and append operations. This makes a Cord useful for large string data sent
111 // over in a wire format that may need to be prepended or appended at some point
112 // during the data exchange (e.g. HTTP, protocol buffers). For example, a
113 // Cord is useful for storing an HTTP request, and prepending an HTTP header to
114 // such a request.
115 //
116 // Cords should not be used for storing general string data, however. They
117 // require overhead to construct and are slower than strings for random access.
118 //
119 // The Cord API provides the following common API operations:
120 //
121 // * Create or assign Cords out of existing string data, memory, or other Cords
122 // * Append and prepend data to an existing Cord
123 // * Create new Sub-Cords from existing Cord data
124 // * Swap Cord data and compare Cord equality
125 // * Write out Cord data by constructing a `std::string`
126 //
127 // Additionally, the API provides iterator utilities to iterate through Cord
128 // data via chunks or character bytes.
129 //
130 class Cord {
131 private:
132 template <typename T>
133 using EnableIfString =
134 absl::enable_if_t<std::is_same<T, std::string>::value, int>;
135
136 public:
137 // Cord::Cord() Constructors.
138
139 // Creates an empty Cord.
140 constexpr Cord() noexcept;
141
142 // Creates a Cord from an existing Cord. Cord is copyable and efficiently
143 // movable. The moved-from state is valid but unspecified.
144 Cord(const Cord& src);
145 Cord(Cord&& src) noexcept;
146 Cord& operator=(const Cord& x);
147 Cord& operator=(Cord&& x) noexcept;
148
149 // Creates a Cord from a `src` string. This constructor is marked explicit to
150 // prevent implicit Cord constructions from arguments convertible to an
151 // `absl::string_view`.
152 explicit Cord(absl::string_view src);
153 Cord& operator=(absl::string_view src);
154
155 // Creates a Cord from a `std::string&&` rvalue. These constructors are
156 // templated to avoid ambiguities for types that are convertible to both
157 // `absl::string_view` and `std::string`, such as `const char*`.
158 template <typename T, EnableIfString<T> = 0>
159 explicit Cord(T&& src);
160 template <typename T, EnableIfString<T> = 0>
161 Cord& operator=(T&& src);
162
163 // Cord::~Cord()
164 //
165 // Destructs the Cord.
~Cord()166 ~Cord() {
167 if (contents_.is_tree()) DestroyCordSlow();
168 }
169
170 // MakeCordFromExternal()
171 //
172 // Creates a Cord that takes ownership of external string memory. The
173 // contents of `data` are not copied to the Cord; instead, the external
174 // memory is added to the Cord and reference-counted. This data may not be
175 // changed for the life of the Cord, though it may be prepended or appended
176 // to.
177 //
178 // `MakeCordFromExternal()` takes a callable "releaser" that is invoked when
179 // the reference count for `data` reaches zero. As noted above, this data must
180 // remain live until the releaser is invoked. The callable releaser also must:
181 //
182 // * be move constructible
183 // * support `void operator()(absl::string_view) const` or `void operator()`
184 //
185 // Example:
186 //
187 // Cord MakeCord(BlockPool* pool) {
188 // Block* block = pool->NewBlock();
189 // FillBlock(block);
190 // return absl::MakeCordFromExternal(
191 // block->ToStringView(),
192 // [pool, block](absl::string_view v) {
193 // pool->FreeBlock(block, v);
194 // });
195 // }
196 //
197 // WARNING: Because a Cord can be reference-counted, it's likely a bug if your
198 // releaser doesn't do anything. For example, consider the following:
199 //
200 // void Foo(const char* buffer, int len) {
201 // auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len),
202 // [](absl::string_view) {});
203 //
204 // // BUG: If Bar() copies its cord for any reason, including keeping a
205 // // substring of it, the lifetime of buffer might be extended beyond
206 // // when Foo() returns.
207 // Bar(c);
208 // }
209 template <typename Releaser>
210 friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser);
211
212 // Cord::Clear()
213 //
214 // Releases the Cord data. Any nodes that share data with other Cords, if
215 // applicable, will have their reference counts reduced by 1.
216 void Clear();
217
218 // Cord::Append()
219 //
220 // Appends data to the Cord, which may come from another Cord or other string
221 // data.
222 void Append(const Cord& src);
223 void Append(Cord&& src);
224 void Append(absl::string_view src);
225 template <typename T, EnableIfString<T> = 0>
226 void Append(T&& src);
227
228 // Cord::Prepend()
229 //
230 // Prepends data to the Cord, which may come from another Cord or other string
231 // data.
232 void Prepend(const Cord& src);
233 void Prepend(absl::string_view src);
234 template <typename T, EnableIfString<T> = 0>
235 void Prepend(T&& src);
236
237 // Cord::RemovePrefix()
238 //
239 // Removes the first `n` bytes of a Cord.
240 void RemovePrefix(size_t n);
241 void RemoveSuffix(size_t n);
242
243 // Cord::Subcord()
244 //
245 // Returns a new Cord representing the subrange [pos, pos + new_size) of
246 // *this. If pos >= size(), the result is empty(). If
247 // (pos + new_size) >= size(), the result is the subrange [pos, size()).
248 Cord Subcord(size_t pos, size_t new_size) const;
249
250 // Cord::swap()
251 //
252 // Swaps the contents of the Cord with `other`.
253 void swap(Cord& other) noexcept;
254
255 // swap()
256 //
257 // Swaps the contents of two Cords.
swap(Cord & x,Cord & y)258 friend void swap(Cord& x, Cord& y) noexcept {
259 x.swap(y);
260 }
261
262 // Cord::size()
263 //
264 // Returns the size of the Cord.
265 size_t size() const;
266
267 // Cord::empty()
268 //
269 // Determines whether the given Cord is empty, returning `true` is so.
270 bool empty() const;
271
272 // Cord::EstimatedMemoryUsage()
273 //
274 // Returns the *approximate* number of bytes held in full or in part by this
275 // Cord (which may not remain the same between invocations). Note that Cords
276 // that share memory could each be "charged" independently for the same shared
277 // memory.
278 size_t EstimatedMemoryUsage() const;
279
280 // Cord::Compare()
281 //
282 // Compares 'this' Cord with rhs. This function and its relatives treat Cords
283 // as sequences of unsigned bytes. The comparison is a straightforward
284 // lexicographic comparison. `Cord::Compare()` returns values as follows:
285 //
286 // -1 'this' Cord is smaller
287 // 0 two Cords are equal
288 // 1 'this' Cord is larger
289 int Compare(absl::string_view rhs) const;
290 int Compare(const Cord& rhs) const;
291
292 // Cord::StartsWith()
293 //
294 // Determines whether the Cord starts with the passed string data `rhs`.
295 bool StartsWith(const Cord& rhs) const;
296 bool StartsWith(absl::string_view rhs) const;
297
298 // Cord::EndsWith()
299 //
300 // Determines whether the Cord ends with the passed string data `rhs`.
301 bool EndsWith(absl::string_view rhs) const;
302 bool EndsWith(const Cord& rhs) const;
303
304 // Cord::operator std::string()
305 //
306 // Converts a Cord into a `std::string()`. This operator is marked explicit to
307 // prevent unintended Cord usage in functions that take a string.
308 explicit operator std::string() const;
309
310 // CopyCordToString()
311 //
312 // Copies the contents of a `src` Cord into a `*dst` string.
313 //
314 // This function optimizes the case of reusing the destination string since it
315 // can reuse previously allocated capacity. However, this function does not
316 // guarantee that pointers previously returned by `dst->data()` remain valid
317 // even if `*dst` had enough capacity to hold `src`. If `*dst` is a new
318 // object, prefer to simply use the conversion operator to `std::string`.
319 friend void CopyCordToString(const Cord& src, std::string* dst);
320
321 class CharIterator;
322
323 //----------------------------------------------------------------------------
324 // Cord::ChunkIterator
325 //----------------------------------------------------------------------------
326 //
327 // A `Cord::ChunkIterator` allows iteration over the constituent chunks of its
328 // Cord. Such iteration allows you to perform non-const operatons on the data
329 // of a Cord without modifying it.
330 //
331 // Generally, you do not instantiate a `Cord::ChunkIterator` directly;
332 // instead, you create one implicitly through use of the `Cord::Chunks()`
333 // member function.
334 //
335 // The `Cord::ChunkIterator` has the following properties:
336 //
337 // * The iterator is invalidated after any non-const operation on the
338 // Cord object over which it iterates.
339 // * The `string_view` returned by dereferencing a valid, non-`end()`
340 // iterator is guaranteed to be non-empty.
341 // * Two `ChunkIterator` objects can be compared equal if and only if they
342 // remain valid and iterate over the same Cord.
343 // * The iterator in this case is a proxy iterator; the `string_view`
344 // returned by the iterator does not live inside the Cord, and its
345 // lifetime is limited to the lifetime of the iterator itself. To help
346 // prevent lifetime issues, `ChunkIterator::reference` is not a true
347 // reference type and is equivalent to `value_type`.
348 // * The iterator keeps state that can grow for Cords that contain many
349 // nodes and are imbalanced due to sharing. Prefer to pass this type by
350 // const reference instead of by value.
351 class ChunkIterator {
352 public:
353 using iterator_category = std::input_iterator_tag;
354 using value_type = absl::string_view;
355 using difference_type = ptrdiff_t;
356 using pointer = const value_type*;
357 using reference = value_type;
358
359 ChunkIterator() = default;
360
361 ChunkIterator& operator++();
362 ChunkIterator operator++(int);
363 bool operator==(const ChunkIterator& other) const;
364 bool operator!=(const ChunkIterator& other) const;
365 reference operator*() const;
366 pointer operator->() const;
367
368 friend class Cord;
369 friend class CharIterator;
370
371 private:
372 using CordRep = absl::cord_internal::CordRep;
373 using CordRepRing = absl::cord_internal::CordRepRing;
374 using CordRepRingReader = absl::cord_internal::CordRepRingReader;
375
376 // Stack of right children of concat nodes that we have to visit.
377 // Keep this at the end of the structure to avoid cache-thrashing.
378 // TODO(jgm): Benchmark to see if there's a more optimal value than 47 for
379 // the inlined vector size (47 exists for backward compatibility).
380 using Stack = absl::InlinedVector<absl::cord_internal::CordRep*, 47>;
381
382 // Constructs a `begin()` iterator from `tree`. `tree` must not be null.
383 explicit ChunkIterator(cord_internal::CordRep* tree);
384
385 // Constructs a `begin()` iterator from `cord`.
386 explicit ChunkIterator(const Cord* cord);
387
388 // Initializes this instance from a tree. Invoked by constructors.
389 void InitTree(cord_internal::CordRep* tree);
390
391 // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than
392 // `current_chunk_.size()`.
393 void RemoveChunkPrefix(size_t n);
394 Cord AdvanceAndReadBytes(size_t n);
395 void AdvanceBytes(size_t n);
396
397 // Stack specific operator++
398 ChunkIterator& AdvanceStack();
399
400 // Ring buffer specific operator++
401 ChunkIterator& AdvanceRing();
402 void AdvanceBytesRing(size_t n);
403
404 // Iterates `n` bytes, where `n` is expected to be greater than or equal to
405 // `current_chunk_.size()`.
406 void AdvanceBytesSlowPath(size_t n);
407
408 // A view into bytes of the current `CordRep`. It may only be a view to a
409 // suffix of bytes if this is being used by `CharIterator`.
410 absl::string_view current_chunk_;
411 // The current leaf, or `nullptr` if the iterator points to short data.
412 // If the current chunk is a substring node, current_leaf_ points to the
413 // underlying flat or external node.
414 absl::cord_internal::CordRep* current_leaf_ = nullptr;
415 // The number of bytes left in the `Cord` over which we are iterating.
416 size_t bytes_remaining_ = 0;
417
418 // Cord reader for ring buffers. Empty if not traversing a ring buffer.
419 CordRepRingReader ring_reader_;
420
421 // See 'Stack' alias definition.
422 Stack stack_of_right_children_;
423 };
424
425 // Cord::ChunkIterator::chunk_begin()
426 //
427 // Returns an iterator to the first chunk of the `Cord`.
428 //
429 // Generally, prefer using `Cord::Chunks()` within a range-based for loop for
430 // iterating over the chunks of a Cord. This method may be useful for getting
431 // a `ChunkIterator` where range-based for-loops are not useful.
432 //
433 // Example:
434 //
435 // absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c,
436 // absl::string_view s) {
437 // return std::find(c.chunk_begin(), c.chunk_end(), s);
438 // }
439 ChunkIterator chunk_begin() const;
440
441 // Cord::ChunkItertator::chunk_end()
442 //
443 // Returns an iterator one increment past the last chunk of the `Cord`.
444 //
445 // Generally, prefer using `Cord::Chunks()` within a range-based for loop for
446 // iterating over the chunks of a Cord. This method may be useful for getting
447 // a `ChunkIterator` where range-based for-loops may not be available.
448 ChunkIterator chunk_end() const;
449
450 //----------------------------------------------------------------------------
451 // Cord::ChunkIterator::ChunkRange
452 //----------------------------------------------------------------------------
453 //
454 // `ChunkRange` is a helper class for iterating over the chunks of the `Cord`,
455 // producing an iterator which can be used within a range-based for loop.
456 // Construction of a `ChunkRange` will return an iterator pointing to the
457 // first chunk of the Cord. Generally, do not construct a `ChunkRange`
458 // directly; instead, prefer to use the `Cord::Chunks()` method.
459 //
460 // Implementation note: `ChunkRange` is simply a convenience wrapper over
461 // `Cord::chunk_begin()` and `Cord::chunk_end()`.
462 class ChunkRange {
463 public:
ChunkRange(const Cord * cord)464 explicit ChunkRange(const Cord* cord) : cord_(cord) {}
465
466 ChunkIterator begin() const;
467 ChunkIterator end() const;
468
469 private:
470 const Cord* cord_;
471 };
472
473 // Cord::Chunks()
474 //
475 // Returns a `Cord::ChunkIterator::ChunkRange` for iterating over the chunks
476 // of a `Cord` with a range-based for-loop. For most iteration tasks on a
477 // Cord, use `Cord::Chunks()` to retrieve this iterator.
478 //
479 // Example:
480 //
481 // void ProcessChunks(const Cord& cord) {
482 // for (absl::string_view chunk : cord.Chunks()) { ... }
483 // }
484 //
485 // Note that the ordinary caveats of temporary lifetime extension apply:
486 //
487 // void Process() {
488 // for (absl::string_view chunk : CordFactory().Chunks()) {
489 // // The temporary Cord returned by CordFactory has been destroyed!
490 // }
491 // }
492 ChunkRange Chunks() const;
493
494 //----------------------------------------------------------------------------
495 // Cord::CharIterator
496 //----------------------------------------------------------------------------
497 //
498 // A `Cord::CharIterator` allows iteration over the constituent characters of
499 // a `Cord`.
500 //
501 // Generally, you do not instantiate a `Cord::CharIterator` directly; instead,
502 // you create one implicitly through use of the `Cord::Chars()` member
503 // function.
504 //
505 // A `Cord::CharIterator` has the following properties:
506 //
507 // * The iterator is invalidated after any non-const operation on the
508 // Cord object over which it iterates.
509 // * Two `CharIterator` objects can be compared equal if and only if they
510 // remain valid and iterate over the same Cord.
511 // * The iterator keeps state that can grow for Cords that contain many
512 // nodes and are imbalanced due to sharing. Prefer to pass this type by
513 // const reference instead of by value.
514 // * This type cannot act as a forward iterator because a `Cord` can reuse
515 // sections of memory. This fact violates the requirement for forward
516 // iterators to compare equal if dereferencing them returns the same
517 // object.
518 class CharIterator {
519 public:
520 using iterator_category = std::input_iterator_tag;
521 using value_type = char;
522 using difference_type = ptrdiff_t;
523 using pointer = const char*;
524 using reference = const char&;
525
526 CharIterator() = default;
527
528 CharIterator& operator++();
529 CharIterator operator++(int);
530 bool operator==(const CharIterator& other) const;
531 bool operator!=(const CharIterator& other) const;
532 reference operator*() const;
533 pointer operator->() const;
534
535 friend Cord;
536
537 private:
CharIterator(const Cord * cord)538 explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {}
539
540 ChunkIterator chunk_iterator_;
541 };
542
543 // Cord::CharIterator::AdvanceAndRead()
544 //
545 // Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes
546 // advanced as a separate `Cord`. `n_bytes` must be less than or equal to the
547 // number of bytes within the Cord; otherwise, behavior is undefined. It is
548 // valid to pass `char_end()` and `0`.
549 static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes);
550
551 // Cord::CharIterator::Advance()
552 //
553 // Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than
554 // or equal to the number of bytes remaining within the Cord; otherwise,
555 // behavior is undefined. It is valid to pass `char_end()` and `0`.
556 static void Advance(CharIterator* it, size_t n_bytes);
557
558 // Cord::CharIterator::ChunkRemaining()
559 //
560 // Returns the longest contiguous view starting at the iterator's position.
561 //
562 // `it` must be dereferenceable.
563 static absl::string_view ChunkRemaining(const CharIterator& it);
564
565 // Cord::CharIterator::char_begin()
566 //
567 // Returns an iterator to the first character of the `Cord`.
568 //
569 // Generally, prefer using `Cord::Chars()` within a range-based for loop for
570 // iterating over the chunks of a Cord. This method may be useful for getting
571 // a `CharIterator` where range-based for-loops may not be available.
572 CharIterator char_begin() const;
573
574 // Cord::CharIterator::char_end()
575 //
576 // Returns an iterator to one past the last character of the `Cord`.
577 //
578 // Generally, prefer using `Cord::Chars()` within a range-based for loop for
579 // iterating over the chunks of a Cord. This method may be useful for getting
580 // a `CharIterator` where range-based for-loops are not useful.
581 CharIterator char_end() const;
582
583 // Cord::CharIterator::CharRange
584 //
585 // `CharRange` is a helper class for iterating over the characters of a
586 // producing an iterator which can be used within a range-based for loop.
587 // Construction of a `CharRange` will return an iterator pointing to the first
588 // character of the Cord. Generally, do not construct a `CharRange` directly;
589 // instead, prefer to use the `Cord::Chars()` method show below.
590 //
591 // Implementation note: `CharRange` is simply a convenience wrapper over
592 // `Cord::char_begin()` and `Cord::char_end()`.
593 class CharRange {
594 public:
CharRange(const Cord * cord)595 explicit CharRange(const Cord* cord) : cord_(cord) {}
596
597 CharIterator begin() const;
598 CharIterator end() const;
599
600 private:
601 const Cord* cord_;
602 };
603
604 // Cord::CharIterator::Chars()
605 //
606 // Returns a `Cord::CharIterator` for iterating over the characters of a
607 // `Cord` with a range-based for-loop. For most character-based iteration
608 // tasks on a Cord, use `Cord::Chars()` to retrieve this iterator.
609 //
610 // Example:
611 //
612 // void ProcessCord(const Cord& cord) {
613 // for (char c : cord.Chars()) { ... }
614 // }
615 //
616 // Note that the ordinary caveats of temporary lifetime extension apply:
617 //
618 // void Process() {
619 // for (char c : CordFactory().Chars()) {
620 // // The temporary Cord returned by CordFactory has been destroyed!
621 // }
622 // }
623 CharRange Chars() const;
624
625 // Cord::operator[]
626 //
627 // Gets the "i"th character of the Cord and returns it, provided that
628 // 0 <= i < Cord.size().
629 //
630 // NOTE: This routine is reasonably efficient. It is roughly
631 // logarithmic based on the number of chunks that make up the cord. Still,
632 // if you need to iterate over the contents of a cord, you should
633 // use a CharIterator/ChunkIterator rather than call operator[] or Get()
634 // repeatedly in a loop.
635 char operator[](size_t i) const;
636
637 // Cord::TryFlat()
638 //
639 // If this cord's representation is a single flat array, returns a
640 // string_view referencing that array. Otherwise returns nullopt.
641 absl::optional<absl::string_view> TryFlat() const;
642
643 // Cord::Flatten()
644 //
645 // Flattens the cord into a single array and returns a view of the data.
646 //
647 // If the cord was already flat, the contents are not modified.
648 absl::string_view Flatten();
649
650 // Supports absl::Cord as a sink object for absl::Format().
AbslFormatFlush(absl::Cord * cord,absl::string_view part)651 friend void AbslFormatFlush(absl::Cord* cord, absl::string_view part) {
652 cord->Append(part);
653 }
654
655 template <typename H>
AbslHashValue(H hash_state,const absl::Cord & c)656 friend H AbslHashValue(H hash_state, const absl::Cord& c) {
657 absl::optional<absl::string_view> maybe_flat = c.TryFlat();
658 if (maybe_flat.has_value()) {
659 return H::combine(std::move(hash_state), *maybe_flat);
660 }
661 return c.HashFragmented(std::move(hash_state));
662 }
663
664 // Create a Cord with the contents of StringConstant<T>::value.
665 // No allocations will be done and no data will be copied.
666 // This is an INTERNAL API and subject to change or removal. This API can only
667 // be used by spelling absl::strings_internal::MakeStringConstant, which is
668 // also an internal API.
669 template <typename T>
670 explicit constexpr Cord(strings_internal::StringConstant<T>);
671
672 private:
673 using CordRep = absl::cord_internal::CordRep;
674 using CordRepFlat = absl::cord_internal::CordRepFlat;
675 using CordzInfo = cord_internal::CordzInfo;
676 using CordzUpdateScope = cord_internal::CordzUpdateScope;
677 using CordzUpdateTracker = cord_internal::CordzUpdateTracker;
678 using InlineData = cord_internal::InlineData;
679 using MethodIdentifier = CordzUpdateTracker::MethodIdentifier;
680
681 // Creates a cord instance with `method` representing the originating
682 // public API call causing the cord to be created.
683 explicit Cord(absl::string_view src, MethodIdentifier method);
684
685 friend class CordTestPeer;
686 friend bool operator==(const Cord& lhs, const Cord& rhs);
687 friend bool operator==(const Cord& lhs, absl::string_view rhs);
688
689 friend const CordzInfo* GetCordzInfoForTesting(const Cord& cord);
690
691 // Calls the provided function once for each cord chunk, in order. Unlike
692 // Chunks(), this API will not allocate memory.
693 void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const;
694
695 // Allocates new contiguous storage for the contents of the cord. This is
696 // called by Flatten() when the cord was not already flat.
697 absl::string_view FlattenSlowPath();
698
699 // Actual cord contents are hidden inside the following simple
700 // class so that we can isolate the bulk of cord.cc from changes
701 // to the representation.
702 //
703 // InlineRep holds either a tree pointer, or an array of kMaxInline bytes.
704 class InlineRep {
705 public:
706 static constexpr unsigned char kMaxInline = cord_internal::kMaxInline;
707 static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), "");
708
InlineRep()709 constexpr InlineRep() : data_() {}
InlineRep(InlineData::DefaultInitType init)710 explicit InlineRep(InlineData::DefaultInitType init) : data_(init) {}
711 InlineRep(const InlineRep& src);
712 InlineRep(InlineRep&& src);
713 InlineRep& operator=(const InlineRep& src);
714 InlineRep& operator=(InlineRep&& src) noexcept;
715
716 explicit constexpr InlineRep(cord_internal::InlineData data);
717
718 void Swap(InlineRep* rhs);
719 bool empty() const;
720 size_t size() const;
721 const char* data() const; // Returns nullptr if holding pointer
722 void set_data(const char* data, size_t n,
723 bool nullify_tail); // Discards pointer, if any
724 char* set_data(size_t n); // Write data to the result
725 // Returns nullptr if holding bytes
726 absl::cord_internal::CordRep* tree() const;
727 absl::cord_internal::CordRep* as_tree() const;
728 // Returns non-null iff was holding a pointer
729 absl::cord_internal::CordRep* clear();
730 // Converts to pointer if necessary.
731 void reduce_size(size_t n); // REQUIRES: holding data
732 void remove_prefix(size_t n); // REQUIRES: holding data
733 void AppendArray(absl::string_view src, MethodIdentifier method);
734 absl::string_view FindFlatStartPiece() const;
735
736 // Creates a CordRepFlat instance from the current inlined data with `extra'
737 // bytes of desired additional capacity.
738 CordRepFlat* MakeFlatWithExtraCapacity(size_t extra);
739
740 // Sets the tree value for this instance. `rep` must not be null.
741 // Requires the current instance to hold a tree, and a lock to be held on
742 // any CordzInfo referenced by this instance. The latter is enforced through
743 // the CordzUpdateScope argument. If the current instance is sampled, then
744 // the CordzInfo instance is updated to reference the new `rep` value.
745 void SetTree(CordRep* rep, const CordzUpdateScope& scope);
746
747 // Identical to SetTree(), except that `rep` is allowed to be null, in
748 // which case the current instance is reset to an empty value.
749 void SetTreeOrEmpty(CordRep* rep, const CordzUpdateScope& scope);
750
751 // Sets the tree value for this instance, and randomly samples this cord.
752 // This function disregards existing contents in `data_`, and should be
753 // called when a Cord is 'promoted' from an 'uninitialized' or 'inlined'
754 // value to a non-inlined (tree / ring) value.
755 void EmplaceTree(CordRep* rep, MethodIdentifier method);
756
757 // Identical to EmplaceTree, except that it copies the parent stack from
758 // the provided `parent` data if the parent is sampled.
759 void EmplaceTree(CordRep* rep, const InlineData& parent,
760 MethodIdentifier method);
761
762 // Commits the change of a newly created, or updated `rep` root value into
763 // this cord. `old_rep` indicates the old (inlined or tree) value of the
764 // cord, and determines if the commit invokes SetTree() or EmplaceTree().
765 void CommitTree(const CordRep* old_rep, CordRep* rep,
766 const CordzUpdateScope& scope, MethodIdentifier method);
767
768 void AppendTreeToInlined(CordRep* tree, MethodIdentifier method);
769 void AppendTreeToTree(CordRep* tree, MethodIdentifier method);
770 void AppendTree(CordRep* tree, MethodIdentifier method);
771 void PrependTreeToInlined(CordRep* tree, MethodIdentifier method);
772 void PrependTreeToTree(CordRep* tree, MethodIdentifier method);
773 void PrependTree(CordRep* tree, MethodIdentifier method);
774
775 template <bool has_length>
776 void GetAppendRegion(char** region, size_t* size, size_t length);
777
IsSame(const InlineRep & other)778 bool IsSame(const InlineRep& other) const {
779 return memcmp(&data_, &other.data_, sizeof(data_)) == 0;
780 }
BitwiseCompare(const InlineRep & other)781 int BitwiseCompare(const InlineRep& other) const {
782 uint64_t x, y;
783 // Use memcpy to avoid aliasing issues.
784 memcpy(&x, &data_, sizeof(x));
785 memcpy(&y, &other.data_, sizeof(y));
786 if (x == y) {
787 memcpy(&x, reinterpret_cast<const char*>(&data_) + 8, sizeof(x));
788 memcpy(&y, reinterpret_cast<const char*>(&other.data_) + 8, sizeof(y));
789 if (x == y) return 0;
790 }
791 return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y)
792 ? -1
793 : 1;
794 }
CopyTo(std::string * dst)795 void CopyTo(std::string* dst) const {
796 // memcpy is much faster when operating on a known size. On most supported
797 // platforms, the small string optimization is large enough that resizing
798 // to 15 bytes does not cause a memory allocation.
799 absl::strings_internal::STLStringResizeUninitialized(dst,
800 sizeof(data_) - 1);
801 memcpy(&(*dst)[0], &data_, sizeof(data_) - 1);
802 // erase is faster than resize because the logic for memory allocation is
803 // not needed.
804 dst->erase(inline_size());
805 }
806
807 // Copies the inline contents into `dst`. Assumes the cord is not empty.
808 void CopyToArray(char* dst) const;
809
is_tree()810 bool is_tree() const { return data_.is_tree(); }
811
812 // Returns true if the Cord is being profiled by cordz.
is_profiled()813 bool is_profiled() const { return data_.is_tree() && data_.is_profiled(); }
814
815 // Returns the profiled CordzInfo, or nullptr if not sampled.
cordz_info()816 absl::cord_internal::CordzInfo* cordz_info() const {
817 return data_.cordz_info();
818 }
819
820 // Sets the profiled CordzInfo. `cordz_info` must not be null.
set_cordz_info(cord_internal::CordzInfo * cordz_info)821 void set_cordz_info(cord_internal::CordzInfo* cordz_info) {
822 assert(cordz_info != nullptr);
823 data_.set_cordz_info(cordz_info);
824 }
825
826 // Resets the current cordz_info to null / empty.
clear_cordz_info()827 void clear_cordz_info() { data_.clear_cordz_info(); }
828
829 private:
830 friend class Cord;
831
832 void AssignSlow(const InlineRep& src);
833 // Unrefs the tree and stops profiling.
834 void UnrefTree();
835
ResetToEmpty()836 void ResetToEmpty() { data_ = {}; }
837
set_inline_size(size_t size)838 void set_inline_size(size_t size) { data_.set_inline_size(size); }
inline_size()839 size_t inline_size() const { return data_.inline_size(); }
840
841 cord_internal::InlineData data_;
842 };
843 InlineRep contents_;
844
845 // Helper for MemoryUsage().
846 static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep);
847
848 // Helper for GetFlat() and TryFlat().
849 static bool GetFlatAux(absl::cord_internal::CordRep* rep,
850 absl::string_view* fragment);
851
852 // Helper for ForEachChunk().
853 static void ForEachChunkAux(
854 absl::cord_internal::CordRep* rep,
855 absl::FunctionRef<void(absl::string_view)> callback);
856
857 // The destructor for non-empty Cords.
858 void DestroyCordSlow();
859
860 // Out-of-line implementation of slower parts of logic.
861 void CopyToArraySlowPath(char* dst) const;
862 int CompareSlowPath(absl::string_view rhs, size_t compared_size,
863 size_t size_to_compare) const;
864 int CompareSlowPath(const Cord& rhs, size_t compared_size,
865 size_t size_to_compare) const;
866 bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const;
867 bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const;
868 int CompareImpl(const Cord& rhs) const;
869
870 template <typename ResultType, typename RHS>
871 friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
872 size_t size_to_compare);
873 static absl::string_view GetFirstChunk(const Cord& c);
874 static absl::string_view GetFirstChunk(absl::string_view sv);
875
876 // Returns a new reference to contents_.tree(), or steals an existing
877 // reference if called on an rvalue.
878 absl::cord_internal::CordRep* TakeRep() const&;
879 absl::cord_internal::CordRep* TakeRep() &&;
880
881 // Helper for Append().
882 template <typename C>
883 void AppendImpl(C&& src);
884
885 // Assigns the value in 'src' to this instance, 'stealing' its contents.
886 // Requires src.length() > kMaxBytesToCopy.
887 Cord& AssignLargeString(std::string&& src);
888
889 // Helper for AbslHashValue().
890 template <typename H>
HashFragmented(H hash_state)891 H HashFragmented(H hash_state) const {
892 typename H::AbslInternalPiecewiseCombiner combiner;
893 ForEachChunk([&combiner, &hash_state](absl::string_view chunk) {
894 hash_state = combiner.add_buffer(std::move(hash_state), chunk.data(),
895 chunk.size());
896 });
897 return H::combine(combiner.finalize(std::move(hash_state)), size());
898 }
899 };
900
901 ABSL_NAMESPACE_END
902 } // namespace absl
903
904 namespace absl {
905 ABSL_NAMESPACE_BEGIN
906
907 // allow a Cord to be logged
908 extern std::ostream& operator<<(std::ostream& out, const Cord& cord);
909
910 // ------------------------------------------------------------------
911 // Internal details follow. Clients should ignore.
912
913 namespace cord_internal {
914
915 // Fast implementation of memmove for up to 15 bytes. This implementation is
916 // safe for overlapping regions. If nullify_tail is true, the destination is
917 // padded with '\0' up to 16 bytes.
918 inline void SmallMemmove(char* dst, const char* src, size_t n,
919 bool nullify_tail = false) {
920 if (n >= 8) {
921 assert(n <= 16);
922 uint64_t buf1;
923 uint64_t buf2;
924 memcpy(&buf1, src, 8);
925 memcpy(&buf2, src + n - 8, 8);
926 if (nullify_tail) {
927 memset(dst + 8, 0, 8);
928 }
929 memcpy(dst, &buf1, 8);
930 memcpy(dst + n - 8, &buf2, 8);
931 } else if (n >= 4) {
932 uint32_t buf1;
933 uint32_t buf2;
934 memcpy(&buf1, src, 4);
935 memcpy(&buf2, src + n - 4, 4);
936 if (nullify_tail) {
937 memset(dst + 4, 0, 4);
938 memset(dst + 8, 0, 8);
939 }
940 memcpy(dst, &buf1, 4);
941 memcpy(dst + n - 4, &buf2, 4);
942 } else {
943 if (n != 0) {
944 dst[0] = src[0];
945 dst[n / 2] = src[n / 2];
946 dst[n - 1] = src[n - 1];
947 }
948 if (nullify_tail) {
949 memset(dst + 8, 0, 8);
950 memset(dst + n, 0, 8);
951 }
952 }
953 }
954
955 // Does non-template-specific `CordRepExternal` initialization.
956 // Expects `data` to be non-empty.
957 void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep);
958
959 // Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer
960 // to it, or `nullptr` if `data` was empty.
961 template <typename Releaser>
962 // NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
NewExternalRep(absl::string_view data,Releaser && releaser)963 CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) {
964 using ReleaserType = absl::decay_t<Releaser>;
965 if (data.empty()) {
966 // Never create empty external nodes.
967 InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)),
968 data);
969 return nullptr;
970 }
971
972 CordRepExternal* rep = new CordRepExternalImpl<ReleaserType>(
973 std::forward<Releaser>(releaser), 0);
974 InitializeCordRepExternal(data, rep);
975 return rep;
976 }
977
978 // Overload for function reference types that dispatches using a function
979 // pointer because there are no `alignof()` or `sizeof()` a function reference.
980 // NOLINTNEXTLINE - suppress clang-tidy raw pointer return.
NewExternalRep(absl::string_view data,void (& releaser)(absl::string_view))981 inline CordRep* NewExternalRep(absl::string_view data,
982 void (&releaser)(absl::string_view)) {
983 return NewExternalRep(data, &releaser);
984 }
985
986 } // namespace cord_internal
987
988 template <typename Releaser>
MakeCordFromExternal(absl::string_view data,Releaser && releaser)989 Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) {
990 Cord cord;
991 if (auto* rep = ::absl::cord_internal::NewExternalRep(
992 data, std::forward<Releaser>(releaser))) {
993 cord.contents_.EmplaceTree(rep,
994 Cord::MethodIdentifier::kMakeCordFromExternal);
995 }
996 return cord;
997 }
998
InlineRep(cord_internal::InlineData data)999 constexpr Cord::InlineRep::InlineRep(cord_internal::InlineData data)
1000 : data_(data) {}
1001
InlineRep(const Cord::InlineRep & src)1002 inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src)
1003 : data_(InlineData::kDefaultInit) {
1004 if (CordRep* tree = src.tree()) {
1005 EmplaceTree(CordRep::Ref(tree), src.data_,
1006 CordzUpdateTracker::kConstructorCord);
1007 } else {
1008 data_ = src.data_;
1009 }
1010 }
1011
InlineRep(Cord::InlineRep && src)1012 inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) : data_(src.data_) {
1013 src.ResetToEmpty();
1014 }
1015
1016 inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) {
1017 if (this == &src) {
1018 return *this;
1019 }
1020 if (!is_tree() && !src.is_tree()) {
1021 data_ = src.data_;
1022 return *this;
1023 }
1024 AssignSlow(src);
1025 return *this;
1026 }
1027
1028 inline Cord::InlineRep& Cord::InlineRep::operator=(
1029 Cord::InlineRep&& src) noexcept {
1030 if (is_tree()) {
1031 UnrefTree();
1032 }
1033 data_ = src.data_;
1034 src.ResetToEmpty();
1035 return *this;
1036 }
1037
Swap(Cord::InlineRep * rhs)1038 inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) {
1039 if (rhs == this) {
1040 return;
1041 }
1042 std::swap(data_, rhs->data_);
1043 }
1044
data()1045 inline const char* Cord::InlineRep::data() const {
1046 return is_tree() ? nullptr : data_.as_chars();
1047 }
1048
as_tree()1049 inline absl::cord_internal::CordRep* Cord::InlineRep::as_tree() const {
1050 assert(data_.is_tree());
1051 return data_.as_tree();
1052 }
1053
tree()1054 inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const {
1055 if (is_tree()) {
1056 return as_tree();
1057 } else {
1058 return nullptr;
1059 }
1060 }
1061
empty()1062 inline bool Cord::InlineRep::empty() const { return data_.is_empty(); }
1063
size()1064 inline size_t Cord::InlineRep::size() const {
1065 return is_tree() ? as_tree()->length : inline_size();
1066 }
1067
MakeFlatWithExtraCapacity(size_t extra)1068 inline cord_internal::CordRepFlat* Cord::InlineRep::MakeFlatWithExtraCapacity(
1069 size_t extra) {
1070 static_assert(cord_internal::kMinFlatLength >= sizeof(data_), "");
1071 size_t len = data_.inline_size();
1072 auto* result = CordRepFlat::New(len + extra);
1073 result->length = len;
1074 memcpy(result->Data(), data_.as_chars(), sizeof(data_));
1075 return result;
1076 }
1077
EmplaceTree(CordRep * rep,MethodIdentifier method)1078 inline void Cord::InlineRep::EmplaceTree(CordRep* rep,
1079 MethodIdentifier method) {
1080 assert(rep);
1081 data_.make_tree(rep);
1082 CordzInfo::MaybeTrackCord(data_, method);
1083 }
1084
EmplaceTree(CordRep * rep,const InlineData & parent,MethodIdentifier method)1085 inline void Cord::InlineRep::EmplaceTree(CordRep* rep, const InlineData& parent,
1086 MethodIdentifier method) {
1087 data_.make_tree(rep);
1088 CordzInfo::MaybeTrackCord(data_, parent, method);
1089 }
1090
SetTree(CordRep * rep,const CordzUpdateScope & scope)1091 inline void Cord::InlineRep::SetTree(CordRep* rep,
1092 const CordzUpdateScope& scope) {
1093 assert(rep);
1094 assert(data_.is_tree());
1095 data_.set_tree(rep);
1096 scope.SetCordRep(rep);
1097 }
1098
SetTreeOrEmpty(CordRep * rep,const CordzUpdateScope & scope)1099 inline void Cord::InlineRep::SetTreeOrEmpty(CordRep* rep,
1100 const CordzUpdateScope& scope) {
1101 assert(data_.is_tree());
1102 if (rep) {
1103 data_.set_tree(rep);
1104 } else {
1105 data_ = {};
1106 }
1107 scope.SetCordRep(rep);
1108 }
1109
CommitTree(const CordRep * old_rep,CordRep * rep,const CordzUpdateScope & scope,MethodIdentifier method)1110 inline void Cord::InlineRep::CommitTree(const CordRep* old_rep, CordRep* rep,
1111 const CordzUpdateScope& scope,
1112 MethodIdentifier method) {
1113 if (old_rep) {
1114 SetTree(rep, scope);
1115 } else {
1116 EmplaceTree(rep, method);
1117 }
1118 }
1119
clear()1120 inline absl::cord_internal::CordRep* Cord::InlineRep::clear() {
1121 if (is_tree()) {
1122 CordzInfo::MaybeUntrackCord(cordz_info());
1123 }
1124 absl::cord_internal::CordRep* result = tree();
1125 ResetToEmpty();
1126 return result;
1127 }
1128
CopyToArray(char * dst)1129 inline void Cord::InlineRep::CopyToArray(char* dst) const {
1130 assert(!is_tree());
1131 size_t n = inline_size();
1132 assert(n != 0);
1133 cord_internal::SmallMemmove(dst, data_.as_chars(), n);
1134 }
1135
Cord()1136 constexpr inline Cord::Cord() noexcept {}
1137
Cord(absl::string_view src)1138 inline Cord::Cord(absl::string_view src)
1139 : Cord(src, CordzUpdateTracker::kConstructorString) {}
1140
1141 template <typename T>
Cord(strings_internal::StringConstant<T>)1142 constexpr Cord::Cord(strings_internal::StringConstant<T>)
1143 : contents_(strings_internal::StringConstant<T>::value.size() <=
1144 cord_internal::kMaxInline
1145 ? cord_internal::InlineData(
1146 strings_internal::StringConstant<T>::value)
1147 : cord_internal::InlineData(
1148 &cord_internal::ConstInitExternalStorage<
1149 strings_internal::StringConstant<T>>::value)) {}
1150
1151 inline Cord& Cord::operator=(const Cord& x) {
1152 contents_ = x.contents_;
1153 return *this;
1154 }
1155
1156 template <typename T, Cord::EnableIfString<T>>
1157 Cord& Cord::operator=(T&& src) {
1158 if (src.size() <= cord_internal::kMaxBytesToCopy) {
1159 return operator=(absl::string_view(src));
1160 } else {
1161 return AssignLargeString(std::forward<T>(src));
1162 }
1163 }
1164
Cord(const Cord & src)1165 inline Cord::Cord(const Cord& src) : contents_(src.contents_) {}
1166
Cord(Cord && src)1167 inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {}
1168
swap(Cord & other)1169 inline void Cord::swap(Cord& other) noexcept {
1170 contents_.Swap(&other.contents_);
1171 }
1172
1173 inline Cord& Cord::operator=(Cord&& x) noexcept {
1174 contents_ = std::move(x.contents_);
1175 return *this;
1176 }
1177
1178 extern template Cord::Cord(std::string&& src);
1179
size()1180 inline size_t Cord::size() const {
1181 // Length is 1st field in str.rep_
1182 return contents_.size();
1183 }
1184
empty()1185 inline bool Cord::empty() const { return contents_.empty(); }
1186
EstimatedMemoryUsage()1187 inline size_t Cord::EstimatedMemoryUsage() const {
1188 size_t result = sizeof(Cord);
1189 if (const absl::cord_internal::CordRep* rep = contents_.tree()) {
1190 result += MemoryUsageAux(rep);
1191 }
1192 return result;
1193 }
1194
TryFlat()1195 inline absl::optional<absl::string_view> Cord::TryFlat() const {
1196 absl::cord_internal::CordRep* rep = contents_.tree();
1197 if (rep == nullptr) {
1198 return absl::string_view(contents_.data(), contents_.size());
1199 }
1200 absl::string_view fragment;
1201 if (GetFlatAux(rep, &fragment)) {
1202 return fragment;
1203 }
1204 return absl::nullopt;
1205 }
1206
Flatten()1207 inline absl::string_view Cord::Flatten() {
1208 absl::cord_internal::CordRep* rep = contents_.tree();
1209 if (rep == nullptr) {
1210 return absl::string_view(contents_.data(), contents_.size());
1211 } else {
1212 absl::string_view already_flat_contents;
1213 if (GetFlatAux(rep, &already_flat_contents)) {
1214 return already_flat_contents;
1215 }
1216 }
1217 return FlattenSlowPath();
1218 }
1219
Append(absl::string_view src)1220 inline void Cord::Append(absl::string_view src) {
1221 contents_.AppendArray(src, CordzUpdateTracker::kAppendString);
1222 }
1223
1224 extern template void Cord::Append(std::string&& src);
1225 extern template void Cord::Prepend(std::string&& src);
1226
Compare(const Cord & rhs)1227 inline int Cord::Compare(const Cord& rhs) const {
1228 if (!contents_.is_tree() && !rhs.contents_.is_tree()) {
1229 return contents_.BitwiseCompare(rhs.contents_);
1230 }
1231
1232 return CompareImpl(rhs);
1233 }
1234
1235 // Does 'this' cord start/end with rhs
StartsWith(const Cord & rhs)1236 inline bool Cord::StartsWith(const Cord& rhs) const {
1237 if (contents_.IsSame(rhs.contents_)) return true;
1238 size_t rhs_size = rhs.size();
1239 if (size() < rhs_size) return false;
1240 return EqualsImpl(rhs, rhs_size);
1241 }
1242
StartsWith(absl::string_view rhs)1243 inline bool Cord::StartsWith(absl::string_view rhs) const {
1244 size_t rhs_size = rhs.size();
1245 if (size() < rhs_size) return false;
1246 return EqualsImpl(rhs, rhs_size);
1247 }
1248
InitTree(cord_internal::CordRep * tree)1249 inline void Cord::ChunkIterator::InitTree(cord_internal::CordRep* tree) {
1250 if (tree->tag == cord_internal::RING) {
1251 current_chunk_ = ring_reader_.Reset(tree->ring());
1252 return;
1253 }
1254
1255 stack_of_right_children_.push_back(tree);
1256 operator++();
1257 }
1258
ChunkIterator(cord_internal::CordRep * tree)1259 inline Cord::ChunkIterator::ChunkIterator(cord_internal::CordRep* tree)
1260 : bytes_remaining_(tree->length) {
1261 InitTree(tree);
1262 }
1263
ChunkIterator(const Cord * cord)1264 inline Cord::ChunkIterator::ChunkIterator(const Cord* cord)
1265 : bytes_remaining_(cord->size()) {
1266 if (cord->contents_.is_tree()) {
1267 InitTree(cord->contents_.as_tree());
1268 } else {
1269 current_chunk_ =
1270 absl::string_view(cord->contents_.data(), bytes_remaining_);
1271 }
1272 }
1273
AdvanceRing()1274 inline Cord::ChunkIterator& Cord::ChunkIterator::AdvanceRing() {
1275 current_chunk_ = ring_reader_.Next();
1276 return *this;
1277 }
1278
AdvanceBytesRing(size_t n)1279 inline void Cord::ChunkIterator::AdvanceBytesRing(size_t n) {
1280 assert(n >= current_chunk_.size());
1281 bytes_remaining_ -= n;
1282 if (bytes_remaining_) {
1283 if (n == current_chunk_.size()) {
1284 current_chunk_ = ring_reader_.Next();
1285 } else {
1286 size_t offset = ring_reader_.length() - bytes_remaining_;
1287 current_chunk_ = ring_reader_.Seek(offset);
1288 }
1289 } else {
1290 current_chunk_ = {};
1291 }
1292 }
1293
1294 inline Cord::ChunkIterator& Cord::ChunkIterator::operator++() {
1295 ABSL_HARDENING_ASSERT(bytes_remaining_ > 0 &&
1296 "Attempted to iterate past `end()`");
1297 assert(bytes_remaining_ >= current_chunk_.size());
1298 bytes_remaining_ -= current_chunk_.size();
1299 if (bytes_remaining_ > 0) {
1300 return ring_reader_ ? AdvanceRing() : AdvanceStack();
1301 } else {
1302 current_chunk_ = {};
1303 }
1304 return *this;
1305 }
1306
1307 inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) {
1308 ChunkIterator tmp(*this);
1309 operator++();
1310 return tmp;
1311 }
1312
1313 inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const {
1314 return bytes_remaining_ == other.bytes_remaining_;
1315 }
1316
1317 inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const {
1318 return !(*this == other);
1319 }
1320
1321 inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const {
1322 ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);
1323 return current_chunk_;
1324 }
1325
1326 inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const {
1327 ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);
1328 return ¤t_chunk_;
1329 }
1330
RemoveChunkPrefix(size_t n)1331 inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) {
1332 assert(n < current_chunk_.size());
1333 current_chunk_.remove_prefix(n);
1334 bytes_remaining_ -= n;
1335 }
1336
AdvanceBytes(size_t n)1337 inline void Cord::ChunkIterator::AdvanceBytes(size_t n) {
1338 assert(bytes_remaining_ >= n);
1339 if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) {
1340 RemoveChunkPrefix(n);
1341 } else if (n != 0) {
1342 ring_reader_ ? AdvanceBytesRing(n) : AdvanceBytesSlowPath(n);
1343 }
1344 }
1345
chunk_begin()1346 inline Cord::ChunkIterator Cord::chunk_begin() const {
1347 return ChunkIterator(this);
1348 }
1349
chunk_end()1350 inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); }
1351
begin()1352 inline Cord::ChunkIterator Cord::ChunkRange::begin() const {
1353 return cord_->chunk_begin();
1354 }
1355
end()1356 inline Cord::ChunkIterator Cord::ChunkRange::end() const {
1357 return cord_->chunk_end();
1358 }
1359
Chunks()1360 inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); }
1361
1362 inline Cord::CharIterator& Cord::CharIterator::operator++() {
1363 if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) {
1364 chunk_iterator_.RemoveChunkPrefix(1);
1365 } else {
1366 ++chunk_iterator_;
1367 }
1368 return *this;
1369 }
1370
1371 inline Cord::CharIterator Cord::CharIterator::operator++(int) {
1372 CharIterator tmp(*this);
1373 operator++();
1374 return tmp;
1375 }
1376
1377 inline bool Cord::CharIterator::operator==(const CharIterator& other) const {
1378 return chunk_iterator_ == other.chunk_iterator_;
1379 }
1380
1381 inline bool Cord::CharIterator::operator!=(const CharIterator& other) const {
1382 return !(*this == other);
1383 }
1384
1385 inline Cord::CharIterator::reference Cord::CharIterator::operator*() const {
1386 return *chunk_iterator_->data();
1387 }
1388
1389 inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const {
1390 return chunk_iterator_->data();
1391 }
1392
AdvanceAndRead(CharIterator * it,size_t n_bytes)1393 inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) {
1394 assert(it != nullptr);
1395 return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes);
1396 }
1397
Advance(CharIterator * it,size_t n_bytes)1398 inline void Cord::Advance(CharIterator* it, size_t n_bytes) {
1399 assert(it != nullptr);
1400 it->chunk_iterator_.AdvanceBytes(n_bytes);
1401 }
1402
ChunkRemaining(const CharIterator & it)1403 inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) {
1404 return *it.chunk_iterator_;
1405 }
1406
char_begin()1407 inline Cord::CharIterator Cord::char_begin() const {
1408 return CharIterator(this);
1409 }
1410
char_end()1411 inline Cord::CharIterator Cord::char_end() const { return CharIterator(); }
1412
begin()1413 inline Cord::CharIterator Cord::CharRange::begin() const {
1414 return cord_->char_begin();
1415 }
1416
end()1417 inline Cord::CharIterator Cord::CharRange::end() const {
1418 return cord_->char_end();
1419 }
1420
Chars()1421 inline Cord::CharRange Cord::Chars() const { return CharRange(this); }
1422
ForEachChunk(absl::FunctionRef<void (absl::string_view)> callback)1423 inline void Cord::ForEachChunk(
1424 absl::FunctionRef<void(absl::string_view)> callback) const {
1425 absl::cord_internal::CordRep* rep = contents_.tree();
1426 if (rep == nullptr) {
1427 callback(absl::string_view(contents_.data(), contents_.size()));
1428 } else {
1429 return ForEachChunkAux(rep, callback);
1430 }
1431 }
1432
1433 // Nonmember Cord-to-Cord relational operarators.
1434 inline bool operator==(const Cord& lhs, const Cord& rhs) {
1435 if (lhs.contents_.IsSame(rhs.contents_)) return true;
1436 size_t rhs_size = rhs.size();
1437 if (lhs.size() != rhs_size) return false;
1438 return lhs.EqualsImpl(rhs, rhs_size);
1439 }
1440
1441 inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); }
1442 inline bool operator<(const Cord& x, const Cord& y) {
1443 return x.Compare(y) < 0;
1444 }
1445 inline bool operator>(const Cord& x, const Cord& y) {
1446 return x.Compare(y) > 0;
1447 }
1448 inline bool operator<=(const Cord& x, const Cord& y) {
1449 return x.Compare(y) <= 0;
1450 }
1451 inline bool operator>=(const Cord& x, const Cord& y) {
1452 return x.Compare(y) >= 0;
1453 }
1454
1455 // Nonmember Cord-to-absl::string_view relational operators.
1456 //
1457 // Due to implicit conversions, these also enable comparisons of Cord with
1458 // with std::string, ::string, and const char*.
1459 inline bool operator==(const Cord& lhs, absl::string_view rhs) {
1460 size_t lhs_size = lhs.size();
1461 size_t rhs_size = rhs.size();
1462 if (lhs_size != rhs_size) return false;
1463 return lhs.EqualsImpl(rhs, rhs_size);
1464 }
1465
1466 inline bool operator==(absl::string_view x, const Cord& y) { return y == x; }
1467 inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); }
1468 inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); }
1469 inline bool operator<(const Cord& x, absl::string_view y) {
1470 return x.Compare(y) < 0;
1471 }
1472 inline bool operator<(absl::string_view x, const Cord& y) {
1473 return y.Compare(x) > 0;
1474 }
1475 inline bool operator>(const Cord& x, absl::string_view y) { return y < x; }
1476 inline bool operator>(absl::string_view x, const Cord& y) { return y < x; }
1477 inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); }
1478 inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); }
1479 inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); }
1480 inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); }
1481
1482 // Some internals exposed to test code.
1483 namespace strings_internal {
1484 class CordTestAccess {
1485 public:
1486 static size_t FlatOverhead();
1487 static size_t MaxFlatLength();
1488 static size_t SizeofCordRepConcat();
1489 static size_t SizeofCordRepExternal();
1490 static size_t SizeofCordRepSubstring();
1491 static size_t FlatTagToLength(uint8_t tag);
1492 static uint8_t LengthToTag(size_t s);
1493 };
1494 } // namespace strings_internal
1495 ABSL_NAMESPACE_END
1496 } // namespace absl
1497
1498 #endif // ABSL_STRINGS_CORD_H_
1499