1 /*
2 * Single-precision pow function.
3 *
4 * Copyright (c) 2017-2019, Arm Limited.
5 * SPDX-License-Identifier: MIT
6 */
7
8 #include <math.h>
9 #include <stdint.h>
10 #include "math_config.h"
11
12 /*
13 POWF_LOG2_POLY_ORDER = 5
14 EXP2F_TABLE_BITS = 5
15
16 ULP error: 0.82 (~ 0.5 + relerr*2^24)
17 relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2)
18 relerr_log2: 1.83 * 2^-33 (Relative error of logx.)
19 relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).)
20 */
21
22 #define N (1 << POWF_LOG2_TABLE_BITS)
23 #define T __powf_log2_data.tab
24 #define A __powf_log2_data.poly
25 #define OFF 0x3f330000
26
27 /* Subnormal input is normalized so ix has negative biased exponent.
28 Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set. */
29 static inline double_t
log2_inline(uint32_t ix)30 log2_inline (uint32_t ix)
31 {
32 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
33 double_t z, r, r2, r4, p, q, y, y0, invc, logc;
34 uint32_t iz, top, tmp;
35 int k, i;
36
37 /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
38 The range is split into N subintervals.
39 The ith subinterval contains z and c is near its center. */
40 tmp = ix - OFF;
41 i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N;
42 top = tmp & 0xff800000;
43 iz = ix - top;
44 k = (int32_t) top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */
45 invc = T[i].invc;
46 logc = T[i].logc;
47 z = (double_t) asfloat (iz);
48
49 /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
50 r = z * invc - 1;
51 y0 = logc + (double_t) k;
52
53 /* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
54 r2 = r * r;
55 y = A[0] * r + A[1];
56 p = A[2] * r + A[3];
57 r4 = r2 * r2;
58 q = A[4] * r + y0;
59 q = p * r2 + q;
60 y = y * r4 + q;
61 return y;
62 }
63
64 #undef N
65 #undef T
66 #define N (1 << EXP2F_TABLE_BITS)
67 #define T __exp2f_data.tab
68 #define SIGN_BIAS (1 << (EXP2F_TABLE_BITS + 11))
69
70 /* The output of log2 and thus the input of exp2 is either scaled by N
71 (in case of fast toint intrinsics) or not. The unscaled xd must be
72 in [-1021,1023], sign_bias sets the sign of the result. */
73 static inline float
exp2_inline(double_t xd,uint32_t sign_bias)74 exp2_inline (double_t xd, uint32_t sign_bias)
75 {
76 uint64_t ki, ski, t;
77 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
78 double_t kd, z, r, r2, y, s;
79
80 #if TOINT_INTRINSICS
81 # define C __exp2f_data.poly_scaled
82 /* N*x = k + r with r in [-1/2, 1/2] */
83 kd = roundtoint (xd); /* k */
84 ki = converttoint (xd);
85 #else
86 # define C __exp2f_data.poly
87 # define SHIFT __exp2f_data.shift_scaled
88 /* x = k/N + r with r in [-1/(2N), 1/(2N)] */
89 kd = eval_as_double (xd + SHIFT);
90 ki = asuint64 (kd);
91 kd -= SHIFT; /* k/N */
92 #endif
93 r = xd - kd;
94
95 /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
96 t = T[ki % N];
97 ski = ki + sign_bias;
98 t += ski << (52 - EXP2F_TABLE_BITS);
99 s = asdouble (t);
100 z = C[0] * r + C[1];
101 r2 = r * r;
102 y = C[2] * r + 1;
103 y = z * r2 + y;
104 y = y * s;
105 return eval_as_float (y);
106 }
107
108 /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
109 the bit representation of a non-zero finite floating-point value. */
110 static inline int
checkint(uint32_t iy)111 checkint (uint32_t iy)
112 {
113 int e = iy >> 23 & 0xff;
114 if (e < 0x7f)
115 return 0;
116 if (e > 0x7f + 23)
117 return 2;
118 if (iy & ((1 << (0x7f + 23 - e)) - 1))
119 return 0;
120 if (iy & (1 << (0x7f + 23 - e)))
121 return 1;
122 return 2;
123 }
124
125 static inline int
zeroinfnan(uint32_t ix)126 zeroinfnan (uint32_t ix)
127 {
128 return 2 * ix - 1 >= 2u * 0x7f800000 - 1;
129 }
130
131 float
powf(float x,float y)132 powf (float x, float y)
133 {
134 uint32_t sign_bias = 0;
135 uint32_t ix, iy;
136
137 ix = asuint (x);
138 iy = asuint (y);
139 if (unlikely (ix - 0x00800000 >= 0x7f800000 - 0x00800000 || zeroinfnan (iy)))
140 {
141 /* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */
142 if (unlikely (zeroinfnan (iy)))
143 {
144 if (2 * iy == 0)
145 return issignalingf_inline (x) ? x + y : 1.0f;
146 if (ix == 0x3f800000)
147 return issignalingf_inline (y) ? x + y : 1.0f;
148 if (2 * ix > 2u * 0x7f800000 || 2 * iy > 2u * 0x7f800000)
149 return x + y;
150 if (2 * ix == 2 * 0x3f800000)
151 return 1.0f;
152 if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000))
153 return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
154 return y * y;
155 }
156 if (unlikely (zeroinfnan (ix)))
157 {
158 float_t x2 = x * x;
159 if (ix & 0x80000000 && checkint (iy) == 1)
160 {
161 x2 = -x2;
162 sign_bias = 1;
163 }
164 #if WANT_ERRNO
165 if (2 * ix == 0 && iy & 0x80000000)
166 return __math_divzerof (sign_bias);
167 #endif
168 /* Without the barrier some versions of clang hoist the 1/x2 and
169 thus division by zero exception can be signaled spuriously. */
170 return iy & 0x80000000 ? opt_barrier_float (1 / x2) : x2;
171 }
172 /* x and y are non-zero finite. */
173 if (ix & 0x80000000)
174 {
175 /* Finite x < 0. */
176 int yint = checkint (iy);
177 if (yint == 0)
178 return __math_invalidf (x);
179 if (yint == 1)
180 sign_bias = SIGN_BIAS;
181 ix &= 0x7fffffff;
182 }
183 if (ix < 0x00800000)
184 {
185 /* Normalize subnormal x so exponent becomes negative. */
186 ix = asuint (x * 0x1p23f);
187 ix &= 0x7fffffff;
188 ix -= 23 << 23;
189 }
190 }
191 double_t logx = log2_inline (ix);
192 double_t ylogx = y * logx; /* Note: cannot overflow, y is single prec. */
193 if (unlikely ((asuint64 (ylogx) >> 47 & 0xffff)
194 >= asuint64 (126.0 * POWF_SCALE) >> 47))
195 {
196 /* |y*log(x)| >= 126. */
197 if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE)
198 /* |x^y| > 0x1.ffffffp127. */
199 return __math_oflowf (sign_bias);
200 if (WANT_ROUNDING && WANT_ERRNO
201 && ylogx > 0x1.fffffffa3aae2p+6 * POWF_SCALE)
202 /* |x^y| > 0x1.fffffep127, check if we round away from 0. */
203 if ((!sign_bias
204 && eval_as_float (1.0f + opt_barrier_float (0x1p-25f)) != 1.0f)
205 || (sign_bias
206 && eval_as_float (-1.0f - opt_barrier_float (0x1p-25f))
207 != -1.0f))
208 return __math_oflowf (sign_bias);
209 if (ylogx <= -150.0 * POWF_SCALE)
210 return __math_uflowf (sign_bias);
211 #if WANT_ERRNO_UFLOW
212 if (ylogx < -149.0 * POWF_SCALE)
213 return __math_may_uflowf (sign_bias);
214 #endif
215 }
216 return exp2_inline (ylogx, sign_bias);
217 }
218 #if USE_GLIBC_ABI
219 strong_alias (powf, __powf_finite)
220 hidden_alias (powf, __ieee754_powf)
221 #endif
222