• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2017-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <context.h>
13 #include <common/debug.h>
14 #include <lib/el3_runtime/context_mgmt.h>
15 #include <lib/xlat_tables/xlat_tables_v2.h>
16 #include <platform_def.h>
17 #include <plat/common/common_def.h>
18 #include <plat/common/platform.h>
19 #include <services/spm_mm_partition.h>
20 
21 #include "spm_mm_private.h"
22 #include "spm_mm_shim_private.h"
23 
24 /* Setup context of the Secure Partition */
spm_sp_setup(sp_context_t * sp_ctx)25 void spm_sp_setup(sp_context_t *sp_ctx)
26 {
27 	cpu_context_t *ctx = &(sp_ctx->cpu_ctx);
28 
29 	/*
30 	 * Initialize CPU context
31 	 * ----------------------
32 	 */
33 
34 	entry_point_info_t ep_info = {0};
35 
36 	SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE);
37 
38 	/* Setup entrypoint and SPSR */
39 	ep_info.pc = BL32_BASE;
40 	ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS);
41 
42 	/*
43 	 * X0: Virtual address of a buffer shared between EL3 and Secure EL0.
44 	 *     The buffer will be mapped in the Secure EL1 translation regime
45 	 *     with Normal IS WBWA attributes and RO data and Execute Never
46 	 *     instruction access permissions.
47 	 *
48 	 * X1: Size of the buffer in bytes
49 	 *
50 	 * X2: cookie value (Implementation Defined)
51 	 *
52 	 * X3: cookie value (Implementation Defined)
53 	 *
54 	 * X4 to X7 = 0
55 	 */
56 	ep_info.args.arg0 = PLAT_SPM_BUF_BASE;
57 	ep_info.args.arg1 = PLAT_SPM_BUF_SIZE;
58 	ep_info.args.arg2 = PLAT_SPM_COOKIE_0;
59 	ep_info.args.arg3 = PLAT_SPM_COOKIE_1;
60 
61 	cm_setup_context(ctx, &ep_info);
62 
63 	/*
64 	 * SP_EL0: A non-zero value will indicate to the SP that the SPM has
65 	 * initialized the stack pointer for the current CPU through
66 	 * implementation defined means. The value will be 0 otherwise.
67 	 */
68 	write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0,
69 			PLAT_SP_IMAGE_STACK_BASE + PLAT_SP_IMAGE_STACK_PCPU_SIZE);
70 
71 	/*
72 	 * Setup translation tables
73 	 * ------------------------
74 	 */
75 
76 #if ENABLE_ASSERTIONS
77 
78 	/* Get max granularity supported by the platform. */
79 	unsigned int max_granule = xlat_arch_get_max_supported_granule_size();
80 
81 	VERBOSE("Max translation granule size supported: %u KiB\n",
82 		max_granule / 1024U);
83 
84 	unsigned int max_granule_mask = max_granule - 1U;
85 
86 	/* Base must be aligned to the max granularity */
87 	assert((PLAT_SP_IMAGE_NS_BUF_BASE & max_granule_mask) == 0);
88 
89 	/* Size must be a multiple of the max granularity */
90 	assert((PLAT_SP_IMAGE_NS_BUF_SIZE & max_granule_mask) == 0);
91 
92 #endif /* ENABLE_ASSERTIONS */
93 
94 	/* This region contains the exception vectors used at S-EL1. */
95 	const mmap_region_t sel1_exception_vectors =
96 		MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
97 				SPM_SHIM_EXCEPTIONS_SIZE,
98 				MT_CODE | MT_SECURE | MT_PRIVILEGED);
99 	mmap_add_region_ctx(sp_ctx->xlat_ctx_handle,
100 			    &sel1_exception_vectors);
101 
102 	mmap_add_ctx(sp_ctx->xlat_ctx_handle,
103 		     plat_get_secure_partition_mmap(NULL));
104 
105 	init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle);
106 
107 	/*
108 	 * MMU-related registers
109 	 * ---------------------
110 	 */
111 	xlat_ctx_t *xlat_ctx = sp_ctx->xlat_ctx_handle;
112 
113 	uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
114 
115 	setup_mmu_cfg((uint64_t *)&mmu_cfg_params, 0, xlat_ctx->base_table,
116 		      xlat_ctx->pa_max_address, xlat_ctx->va_max_address,
117 		      EL1_EL0_REGIME);
118 
119 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_MAIR_EL1,
120 		      mmu_cfg_params[MMU_CFG_MAIR]);
121 
122 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_TCR_EL1,
123 		      mmu_cfg_params[MMU_CFG_TCR]);
124 
125 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_TTBR0_EL1,
126 		      mmu_cfg_params[MMU_CFG_TTBR0]);
127 
128 	/* Setup SCTLR_EL1 */
129 	u_register_t sctlr_el1 = read_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1);
130 
131 	sctlr_el1 |=
132 		/*SCTLR_EL1_RES1 |*/
133 		/* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */
134 		SCTLR_UCI_BIT							|
135 		/* RW regions at xlat regime EL1&0 are forced to be XN. */
136 		SCTLR_WXN_BIT							|
137 		/* Don't trap to EL1 execution of WFI or WFE at EL0. */
138 		SCTLR_NTWI_BIT | SCTLR_NTWE_BIT					|
139 		/* Don't trap to EL1 accesses to CTR_EL0 from EL0. */
140 		SCTLR_UCT_BIT							|
141 		/* Don't trap to EL1 execution of DZ ZVA at EL0. */
142 		SCTLR_DZE_BIT							|
143 		/* Enable SP Alignment check for EL0 */
144 		SCTLR_SA0_BIT							|
145 		/* Don't change PSTATE.PAN on taking an exception to EL1 */
146 		SCTLR_SPAN_BIT							|
147 		/* Allow cacheable data and instr. accesses to normal memory. */
148 		SCTLR_C_BIT | SCTLR_I_BIT					|
149 		/* Enable MMU. */
150 		SCTLR_M_BIT
151 	;
152 
153 	sctlr_el1 &= ~(
154 		/* Explicit data accesses at EL0 are little-endian. */
155 		SCTLR_E0E_BIT							|
156 		/*
157 		 * Alignment fault checking disabled when at EL1 and EL0 as
158 		 * the UEFI spec permits unaligned accesses.
159 		 */
160 		SCTLR_A_BIT							|
161 		/* Accesses to DAIF from EL0 are trapped to EL1. */
162 		SCTLR_UMA_BIT
163 	);
164 
165 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1);
166 
167 	/*
168 	 * Setup other system registers
169 	 * ----------------------------
170 	 */
171 
172 	/* Shim Exception Vector Base Address */
173 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_VBAR_EL1,
174 			SPM_SHIM_EXCEPTIONS_PTR);
175 
176 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_CNTKCTL_EL1,
177 		      EL0PTEN_BIT | EL0VTEN_BIT | EL0PCTEN_BIT | EL0VCTEN_BIT);
178 
179 	/*
180 	 * FPEN: Allow the Secure Partition to access FP/SIMD registers.
181 	 * Note that SPM will not do any saving/restoring of these registers on
182 	 * behalf of the SP. This falls under the SP's responsibility.
183 	 * TTA: Enable access to trace registers.
184 	 * ZEN (v8.2): Trap SVE instructions and access to SVE registers.
185 	 */
186 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_CPACR_EL1,
187 			CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE));
188 
189 	/*
190 	 * Prepare information in buffer shared between EL3 and S-EL0
191 	 * ----------------------------------------------------------
192 	 */
193 
194 	void *shared_buf_ptr = (void *) PLAT_SPM_BUF_BASE;
195 
196 	/* Copy the boot information into the shared buffer with the SP. */
197 	assert((uintptr_t)shared_buf_ptr + sizeof(spm_mm_boot_info_t)
198 	       <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE));
199 
200 	assert(PLAT_SPM_BUF_BASE <= (UINTPTR_MAX - PLAT_SPM_BUF_SIZE + 1));
201 
202 	const spm_mm_boot_info_t *sp_boot_info =
203 			plat_get_secure_partition_boot_info(NULL);
204 
205 	assert(sp_boot_info != NULL);
206 
207 	memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info,
208 	       sizeof(spm_mm_boot_info_t));
209 
210 	/* Pointer to the MP information from the platform port. */
211 	spm_mm_mp_info_t *sp_mp_info =
212 		((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info;
213 
214 	assert(sp_mp_info != NULL);
215 
216 	/*
217 	 * Point the shared buffer MP information pointer to where the info will
218 	 * be populated, just after the boot info.
219 	 */
220 	((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info =
221 		(spm_mm_mp_info_t *) ((uintptr_t)shared_buf_ptr
222 				+ sizeof(spm_mm_boot_info_t));
223 
224 	/*
225 	 * Update the shared buffer pointer to where the MP information for the
226 	 * payload will be populated
227 	 */
228 	shared_buf_ptr = ((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info;
229 
230 	/*
231 	 * Copy the cpu information into the shared buffer area after the boot
232 	 * information.
233 	 */
234 	assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT);
235 
236 	assert((uintptr_t)shared_buf_ptr
237 	       <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE -
238 		       (sp_boot_info->num_cpus * sizeof(*sp_mp_info))));
239 
240 	memcpy(shared_buf_ptr, (const void *) sp_mp_info,
241 		sp_boot_info->num_cpus * sizeof(*sp_mp_info));
242 
243 	/*
244 	 * Calculate the linear indices of cores in boot information for the
245 	 * secure partition and flag the primary CPU
246 	 */
247 	sp_mp_info = (spm_mm_mp_info_t *) shared_buf_ptr;
248 
249 	for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) {
250 		u_register_t mpidr = sp_mp_info[index].mpidr;
251 
252 		sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr);
253 		if (plat_my_core_pos() == sp_mp_info[index].linear_id)
254 			sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU;
255 	}
256 }
257