1#!/usr/bin/env python 2# @lint-avoid-python-3-compatibility-imports 3# 4# runqslower Trace long process scheduling delays. 5# For Linux, uses BCC, eBPF. 6# 7# This script traces high scheduling delays between tasks being 8# ready to run and them running on CPU after that. 9# 10# USAGE: runqslower [-p PID] [min_us] 11# 12# REQUIRES: Linux 4.9+ (BPF_PROG_TYPE_PERF_EVENT support). 13# 14# This measures the time a task spends waiting on a run queue for a turn 15# on-CPU, and shows this time as a individual events. This time should be small, 16# but a task may need to wait its turn due to CPU load. 17# 18# This measures two types of run queue latency: 19# 1. The time from a task being enqueued on a run queue to its context switch 20# and execution. This traces ttwu_do_wakeup(), wake_up_new_task() -> 21# finish_task_switch() with either raw tracepoints (if supported) or kprobes 22# and instruments the run queue latency after a voluntary context switch. 23# 2. The time from when a task was involuntary context switched and still 24# in the runnable state, to when it next executed. This is instrumented 25# from finish_task_switch() alone. 26# 27# Copyright 2016 Cloudflare, Inc. 28# Licensed under the Apache License, Version 2.0 (the "License") 29# 30# 02-May-2018 Ivan Babrou Created this. 31 32from __future__ import print_function 33from bcc import BPF 34import argparse 35from time import strftime 36import ctypes as ct 37 38# arguments 39examples = """examples: 40 ./runqslower # trace run queue latency higher than 10000 us (default) 41 ./runqslower 1000 # trace run queue latency higher than 1000 us 42 ./runqslower -p 123 # trace pid 123 only 43""" 44parser = argparse.ArgumentParser( 45 description="Trace high run queue latency", 46 formatter_class=argparse.RawDescriptionHelpFormatter, 47 epilog=examples) 48parser.add_argument("-p", "--pid", type=int, metavar="PID", dest="pid", 49 help="trace this PID only") 50parser.add_argument("min_us", nargs="?", default='10000', 51 help="minimum run queue latecy to trace, in ms (default 10000)") 52parser.add_argument("--ebpf", action="store_true", 53 help=argparse.SUPPRESS) 54args = parser.parse_args() 55min_us = int(args.min_us) 56debug = 0 57 58# define BPF program 59bpf_text = """ 60#include <uapi/linux/ptrace.h> 61#include <linux/sched.h> 62#include <linux/nsproxy.h> 63#include <linux/pid_namespace.h> 64 65BPF_HASH(start, u32); 66 67struct rq; 68 69struct data_t { 70 u32 pid; 71 char task[TASK_COMM_LEN]; 72 u64 delta_us; 73}; 74 75BPF_PERF_OUTPUT(events); 76 77// record enqueue timestamp 78static int trace_enqueue(u32 tgid, u32 pid) 79{ 80 if (FILTER_PID || pid == 0) 81 return 0; 82 u64 ts = bpf_ktime_get_ns(); 83 start.update(&pid, &ts); 84 return 0; 85} 86""" 87 88bpf_text_kprobe = """ 89int trace_wake_up_new_task(struct pt_regs *ctx, struct task_struct *p) 90{ 91 return trace_enqueue(p->tgid, p->pid); 92} 93 94int trace_ttwu_do_wakeup(struct pt_regs *ctx, struct rq *rq, struct task_struct *p, 95 int wake_flags) 96{ 97 return trace_enqueue(p->tgid, p->pid); 98} 99 100// calculate latency 101int trace_run(struct pt_regs *ctx, struct task_struct *prev) 102{ 103 u32 pid, tgid; 104 105 // ivcsw: treat like an enqueue event and store timestamp 106 if (prev->state == TASK_RUNNING) { 107 tgid = prev->tgid; 108 pid = prev->pid; 109 if (!(FILTER_PID || pid == 0)) { 110 u64 ts = bpf_ktime_get_ns(); 111 start.update(&pid, &ts); 112 } 113 } 114 115 tgid = bpf_get_current_pid_tgid() >> 32; 116 pid = bpf_get_current_pid_tgid(); 117 118 u64 *tsp, delta_us; 119 120 // fetch timestamp and calculate delta 121 tsp = start.lookup(&pid); 122 if (tsp == 0) { 123 return 0; // missed enqueue 124 } 125 delta_us = (bpf_ktime_get_ns() - *tsp) / 1000; 126 127 if (FILTER_US) 128 return 0; 129 130 struct data_t data = {}; 131 data.pid = pid; 132 data.delta_us = delta_us; 133 bpf_get_current_comm(&data.task, sizeof(data.task)); 134 135 // output 136 events.perf_submit(ctx, &data, sizeof(data)); 137 138 start.delete(&pid); 139 return 0; 140} 141""" 142 143bpf_text_raw_tp = """ 144RAW_TRACEPOINT_PROBE(sched_wakeup) 145{ 146 // TP_PROTO(struct task_struct *p) 147 struct task_struct *p = (struct task_struct *)ctx->args[0]; 148 return trace_enqueue(p->tgid, p->pid); 149} 150 151RAW_TRACEPOINT_PROBE(sched_wakeup_new) 152{ 153 // TP_PROTO(struct task_struct *p) 154 struct task_struct *p = (struct task_struct *)ctx->args[0]; 155 u32 tgid, pid; 156 157 bpf_probe_read(&tgid, sizeof(tgid), &p->tgid); 158 bpf_probe_read(&pid, sizeof(pid), &p->pid); 159 return trace_enqueue(tgid, pid); 160} 161 162RAW_TRACEPOINT_PROBE(sched_switch) 163{ 164 // TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next) 165 struct task_struct *prev = (struct task_struct *)ctx->args[1]; 166 struct task_struct *next= (struct task_struct *)ctx->args[2]; 167 u32 pid, tgid; 168 long state; 169 170 // ivcsw: treat like an enqueue event and store timestamp 171 bpf_probe_read(&state, sizeof(long), &prev->state); 172 if (state == TASK_RUNNING) { 173 bpf_probe_read(&tgid, sizeof(prev->tgid), &prev->tgid); 174 bpf_probe_read(&pid, sizeof(prev->pid), &prev->pid); 175 if (!(FILTER_PID || pid == 0)) { 176 u64 ts = bpf_ktime_get_ns(); 177 start.update(&pid, &ts); 178 } 179 } 180 181 bpf_probe_read(&tgid, sizeof(next->tgid), &next->tgid); 182 bpf_probe_read(&pid, sizeof(next->pid), &next->pid); 183 184 u64 *tsp, delta_us; 185 186 // fetch timestamp and calculate delta 187 tsp = start.lookup(&pid); 188 if (tsp == 0) { 189 return 0; // missed enqueue 190 } 191 delta_us = (bpf_ktime_get_ns() - *tsp) / 1000; 192 193 if (FILTER_US) 194 return 0; 195 196 struct data_t data = {}; 197 data.pid = pid; 198 data.delta_us = delta_us; 199 bpf_get_current_comm(&data.task, sizeof(data.task)); 200 201 // output 202 events.perf_submit(ctx, &data, sizeof(data)); 203 204 start.delete(&pid); 205 return 0; 206} 207""" 208 209is_support_raw_tp = BPF.support_raw_tracepoint() 210if is_support_raw_tp: 211 bpf_text += bpf_text_raw_tp 212else: 213 bpf_text += bpf_text_kprobe 214 215# code substitutions 216if min_us == 0: 217 bpf_text = bpf_text.replace('FILTER_US', '0') 218else: 219 bpf_text = bpf_text.replace('FILTER_US', 'delta_us <= %s' % str(min_us)) 220if args.pid: 221 bpf_text = bpf_text.replace('FILTER_PID', 'pid != %s' % args.pid) 222else: 223 bpf_text = bpf_text.replace('FILTER_PID', '0') 224if debug or args.ebpf: 225 print(bpf_text) 226 if args.ebpf: 227 exit() 228 229# kernel->user event data: struct data_t 230DNAME_INLINE_LEN = 32 # linux/dcache.h 231TASK_COMM_LEN = 16 # linux/sched.h 232class Data(ct.Structure): 233 _fields_ = [ 234 ("pid", ct.c_uint), 235 ("task", ct.c_char * TASK_COMM_LEN), 236 ("delta_us", ct.c_ulonglong), 237 ] 238 239# process event 240def print_event(cpu, data, size): 241 event = ct.cast(data, ct.POINTER(Data)).contents 242 print("%-8s %-16s %-6s %14s" % (strftime("%H:%M:%S"), event.task, event.pid, event.delta_us)) 243 244# load BPF program 245b = BPF(text=bpf_text) 246if not is_support_raw_tp: 247 b.attach_kprobe(event="ttwu_do_wakeup", fn_name="trace_ttwu_do_wakeup") 248 b.attach_kprobe(event="wake_up_new_task", fn_name="trace_wake_up_new_task") 249 b.attach_kprobe(event="finish_task_switch", fn_name="trace_run") 250 251print("Tracing run queue latency higher than %d us" % min_us) 252print("%-8s %-16s %-6s %14s" % ("TIME", "COMM", "PID", "LAT(us)")) 253 254# read events 255b["events"].open_perf_buffer(print_event, page_cnt=64) 256while 1: 257 try: 258 b.perf_buffer_poll() 259 except KeyboardInterrupt: 260 exit() 261