1 /* ====================================================================
2 * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==================================================================== */
48
49 #include <openssl/cmac.h>
50
51 #include <assert.h>
52 #include <string.h>
53
54 #include <openssl/aes.h>
55 #include <openssl/cipher.h>
56 #include <openssl/mem.h>
57
58 #include "../internal.h"
59
60
61 struct cmac_ctx_st {
62 EVP_CIPHER_CTX cipher_ctx;
63 // k1 and k2 are the CMAC subkeys. See
64 // https://tools.ietf.org/html/rfc4493#section-2.3
65 uint8_t k1[AES_BLOCK_SIZE];
66 uint8_t k2[AES_BLOCK_SIZE];
67 // Last (possibly partial) scratch
68 uint8_t block[AES_BLOCK_SIZE];
69 // block_used contains the number of valid bytes in |block|.
70 unsigned block_used;
71 };
72
CMAC_CTX_init(CMAC_CTX * ctx)73 static void CMAC_CTX_init(CMAC_CTX *ctx) {
74 EVP_CIPHER_CTX_init(&ctx->cipher_ctx);
75 }
76
CMAC_CTX_cleanup(CMAC_CTX * ctx)77 static void CMAC_CTX_cleanup(CMAC_CTX *ctx) {
78 EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx);
79 OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1));
80 OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2));
81 OPENSSL_cleanse(ctx->block, sizeof(ctx->block));
82 }
83
AES_CMAC(uint8_t out[16],const uint8_t * key,size_t key_len,const uint8_t * in,size_t in_len)84 int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len,
85 const uint8_t *in, size_t in_len) {
86 const EVP_CIPHER *cipher;
87 switch (key_len) {
88 case 16:
89 cipher = EVP_aes_128_cbc();
90 break;
91 case 32:
92 cipher = EVP_aes_256_cbc();
93 break;
94 default:
95 return 0;
96 }
97
98 size_t scratch_out_len;
99 CMAC_CTX ctx;
100 CMAC_CTX_init(&ctx);
101
102 const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) &&
103 CMAC_Update(&ctx, in, in_len) &&
104 CMAC_Final(&ctx, out, &scratch_out_len);
105
106 CMAC_CTX_cleanup(&ctx);
107 return ok;
108 }
109
CMAC_CTX_new(void)110 CMAC_CTX *CMAC_CTX_new(void) {
111 CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
112 if (ctx != NULL) {
113 CMAC_CTX_init(ctx);
114 }
115 return ctx;
116 }
117
CMAC_CTX_free(CMAC_CTX * ctx)118 void CMAC_CTX_free(CMAC_CTX *ctx) {
119 if (ctx == NULL) {
120 return;
121 }
122
123 CMAC_CTX_cleanup(ctx);
124 OPENSSL_free(ctx);
125 }
126
CMAC_CTX_copy(CMAC_CTX * out,const CMAC_CTX * in)127 int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) {
128 if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) {
129 return 0;
130 }
131 OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE);
132 OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE);
133 OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE);
134 out->block_used = in->block_used;
135 return 1;
136 }
137
138 // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸)
139 // with a hard-coded reduction polynomial and sets |out| as x times the input.
140 //
141 // See https://tools.ietf.org/html/rfc4493#section-2.3
binary_field_mul_x_128(uint8_t out[16],const uint8_t in[16])142 static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) {
143 unsigned i;
144
145 // Shift |in| to left, including carry.
146 for (i = 0; i < 15; i++) {
147 out[i] = (in[i] << 1) | (in[i+1] >> 7);
148 }
149
150 // If MSB set fixup with R.
151 const uint8_t carry = in[0] >> 7;
152 out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87);
153 }
154
155 // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an
156 // element of GF(2⁶⁴).
157 //
158 // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
binary_field_mul_x_64(uint8_t out[8],const uint8_t in[8])159 static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) {
160 unsigned i;
161
162 // Shift |in| to left, including carry.
163 for (i = 0; i < 7; i++) {
164 out[i] = (in[i] << 1) | (in[i+1] >> 7);
165 }
166
167 // If MSB set fixup with R.
168 const uint8_t carry = in[0] >> 7;
169 out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b);
170 }
171
172 static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0};
173
CMAC_Init(CMAC_CTX * ctx,const void * key,size_t key_len,const EVP_CIPHER * cipher,ENGINE * engine)174 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len,
175 const EVP_CIPHER *cipher, ENGINE *engine) {
176 uint8_t scratch[AES_BLOCK_SIZE];
177
178 size_t block_size = EVP_CIPHER_block_size(cipher);
179 if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) ||
180 EVP_CIPHER_key_length(cipher) != key_len ||
181 !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) ||
182 !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) ||
183 // Reset context again ready for first data.
184 !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) {
185 return 0;
186 }
187
188 if (block_size == AES_BLOCK_SIZE) {
189 binary_field_mul_x_128(ctx->k1, scratch);
190 binary_field_mul_x_128(ctx->k2, ctx->k1);
191 } else {
192 binary_field_mul_x_64(ctx->k1, scratch);
193 binary_field_mul_x_64(ctx->k2, ctx->k1);
194 }
195 ctx->block_used = 0;
196
197 return 1;
198 }
199
CMAC_Reset(CMAC_CTX * ctx)200 int CMAC_Reset(CMAC_CTX *ctx) {
201 ctx->block_used = 0;
202 return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV);
203 }
204
CMAC_Update(CMAC_CTX * ctx,const uint8_t * in,size_t in_len)205 int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) {
206 size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx);
207 assert(block_size <= AES_BLOCK_SIZE);
208 uint8_t scratch[AES_BLOCK_SIZE];
209
210 if (ctx->block_used > 0) {
211 size_t todo = block_size - ctx->block_used;
212 if (in_len < todo) {
213 todo = in_len;
214 }
215
216 OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo);
217 in += todo;
218 in_len -= todo;
219 ctx->block_used += todo;
220
221 // If |in_len| is zero then either |ctx->block_used| is less than
222 // |block_size|, in which case we can stop here, or |ctx->block_used| is
223 // exactly |block_size| but there's no more data to process. In the latter
224 // case we don't want to process this block now because it might be the last
225 // block and that block is treated specially.
226 if (in_len == 0) {
227 return 1;
228 }
229
230 assert(ctx->block_used == block_size);
231
232 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) {
233 return 0;
234 }
235 }
236
237 // Encrypt all but one of the remaining blocks.
238 while (in_len > block_size) {
239 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) {
240 return 0;
241 }
242 in += block_size;
243 in_len -= block_size;
244 }
245
246 OPENSSL_memcpy(ctx->block, in, in_len);
247 ctx->block_used = in_len;
248
249 return 1;
250 }
251
CMAC_Final(CMAC_CTX * ctx,uint8_t * out,size_t * out_len)252 int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) {
253 size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx);
254 assert(block_size <= AES_BLOCK_SIZE);
255
256 *out_len = block_size;
257 if (out == NULL) {
258 return 1;
259 }
260
261 const uint8_t *mask = ctx->k1;
262
263 if (ctx->block_used != block_size) {
264 // If the last block is incomplete, terminate it with a single 'one' bit
265 // followed by zeros.
266 ctx->block[ctx->block_used] = 0x80;
267 OPENSSL_memset(ctx->block + ctx->block_used + 1, 0,
268 block_size - (ctx->block_used + 1));
269
270 mask = ctx->k2;
271 }
272
273 for (unsigned i = 0; i < block_size; i++) {
274 out[i] = ctx->block[i] ^ mask[i];
275 }
276
277 return EVP_Cipher(&ctx->cipher_ctx, out, out, block_size);
278 }
279