1 /*
2 * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4 *
5 * Licensed under the OpenSSL license (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 *
10 * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
11 * (1) Intel Corporation, Israel Development Center, Haifa, Israel
12 * (2) University of Haifa, Israel
13 *
14 * Reference:
15 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
16 * 256 Bit Primes"
17 */
18
19 #include <openssl/ec.h>
20
21 #include <assert.h>
22 #include <stdint.h>
23 #include <string.h>
24
25 #include <openssl/bn.h>
26 #include <openssl/cpu.h>
27 #include <openssl/crypto.h>
28 #include <openssl/err.h>
29
30 #include "../bn/internal.h"
31 #include "../delocate.h"
32 #include "../../internal.h"
33 #include "internal.h"
34 #include "p256-x86_64.h"
35
36
37 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
38 !defined(OPENSSL_SMALL)
39
40 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
41
42 // One converted into the Montgomery domain
43 static const BN_ULONG ONE[P256_LIMBS] = {
44 TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
45 TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
46 };
47
48 // Precomputed tables for the default generator
49 #include "p256-x86_64-table.h"
50
51 // Recode window to a signed digit, see |ec_GFp_nistp_recode_scalar_bits| in
52 // util.c for details
booth_recode_w5(crypto_word_t in)53 static crypto_word_t booth_recode_w5(crypto_word_t in) {
54 crypto_word_t s, d;
55
56 s = ~((in >> 5) - 1);
57 d = (1 << 6) - in - 1;
58 d = (d & s) | (in & ~s);
59 d = (d >> 1) + (d & 1);
60
61 return (d << 1) + (s & 1);
62 }
63
booth_recode_w7(crypto_word_t in)64 static crypto_word_t booth_recode_w7(crypto_word_t in) {
65 crypto_word_t s, d;
66
67 s = ~((in >> 7) - 1);
68 d = (1 << 8) - in - 1;
69 d = (d & s) | (in & ~s);
70 d = (d >> 1) + (d & 1);
71
72 return (d << 1) + (s & 1);
73 }
74
75 // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
76 // if |move| is zero.
77 //
78 // WARNING: this breaks the usual convention of constant-time functions
79 // returning masks.
copy_conditional(BN_ULONG dst[P256_LIMBS],const BN_ULONG src[P256_LIMBS],BN_ULONG move)80 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
81 const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
82 BN_ULONG mask1 = ((BN_ULONG)0) - move;
83 BN_ULONG mask2 = ~mask1;
84
85 dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
86 dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
87 dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
88 dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
89 if (P256_LIMBS == 8) {
90 dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
91 dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
92 dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
93 dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
94 }
95 }
96
97 // is_not_zero returns one iff in != 0 and zero otherwise.
98 //
99 // WARNING: this breaks the usual convention of constant-time functions
100 // returning masks.
101 //
102 // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
103 // (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
104 // )
105 //
106 // (declare-fun x () (_ BitVec 64))
107 //
108 // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
109 // (check-sat)
110 //
111 // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
112 // (check-sat)
113 //
is_not_zero(BN_ULONG in)114 static BN_ULONG is_not_zero(BN_ULONG in) {
115 in |= (0 - in);
116 in >>= BN_BITS2 - 1;
117 return in;
118 }
119
120 // ecp_nistz256_mod_inverse_sqr_mont sets |r| to (|in| * 2^-256)^-2 * 2^256 mod
121 // p. That is, |r| is the modular inverse square of |in| for input and output in
122 // the Montgomery domain.
ecp_nistz256_mod_inverse_sqr_mont(BN_ULONG r[P256_LIMBS],const BN_ULONG in[P256_LIMBS])123 static void ecp_nistz256_mod_inverse_sqr_mont(BN_ULONG r[P256_LIMBS],
124 const BN_ULONG in[P256_LIMBS]) {
125 // This implements the addition chain described in
126 // https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion
127 BN_ULONG x2[P256_LIMBS], x3[P256_LIMBS], x6[P256_LIMBS], x12[P256_LIMBS],
128 x15[P256_LIMBS], x30[P256_LIMBS], x32[P256_LIMBS];
129 ecp_nistz256_sqr_mont(x2, in); // 2^2 - 2^1
130 ecp_nistz256_mul_mont(x2, x2, in); // 2^2 - 2^0
131
132 ecp_nistz256_sqr_mont(x3, x2); // 2^3 - 2^1
133 ecp_nistz256_mul_mont(x3, x3, in); // 2^3 - 2^0
134
135 ecp_nistz256_sqr_mont(x6, x3);
136 for (int i = 1; i < 3; i++) {
137 ecp_nistz256_sqr_mont(x6, x6);
138 } // 2^6 - 2^3
139 ecp_nistz256_mul_mont(x6, x6, x3); // 2^6 - 2^0
140
141 ecp_nistz256_sqr_mont(x12, x6);
142 for (int i = 1; i < 6; i++) {
143 ecp_nistz256_sqr_mont(x12, x12);
144 } // 2^12 - 2^6
145 ecp_nistz256_mul_mont(x12, x12, x6); // 2^12 - 2^0
146
147 ecp_nistz256_sqr_mont(x15, x12);
148 for (int i = 1; i < 3; i++) {
149 ecp_nistz256_sqr_mont(x15, x15);
150 } // 2^15 - 2^3
151 ecp_nistz256_mul_mont(x15, x15, x3); // 2^15 - 2^0
152
153 ecp_nistz256_sqr_mont(x30, x15);
154 for (int i = 1; i < 15; i++) {
155 ecp_nistz256_sqr_mont(x30, x30);
156 } // 2^30 - 2^15
157 ecp_nistz256_mul_mont(x30, x30, x15); // 2^30 - 2^0
158
159 ecp_nistz256_sqr_mont(x32, x30);
160 ecp_nistz256_sqr_mont(x32, x32); // 2^32 - 2^2
161 ecp_nistz256_mul_mont(x32, x32, x2); // 2^32 - 2^0
162
163 BN_ULONG ret[P256_LIMBS];
164 ecp_nistz256_sqr_mont(ret, x32);
165 for (int i = 1; i < 31 + 1; i++) {
166 ecp_nistz256_sqr_mont(ret, ret);
167 } // 2^64 - 2^32
168 ecp_nistz256_mul_mont(ret, ret, in); // 2^64 - 2^32 + 2^0
169
170 for (int i = 0; i < 96 + 32; i++) {
171 ecp_nistz256_sqr_mont(ret, ret);
172 } // 2^192 - 2^160 + 2^128
173 ecp_nistz256_mul_mont(ret, ret, x32); // 2^192 - 2^160 + 2^128 + 2^32 - 2^0
174
175 for (int i = 0; i < 32; i++) {
176 ecp_nistz256_sqr_mont(ret, ret);
177 } // 2^224 - 2^192 + 2^160 + 2^64 - 2^32
178 ecp_nistz256_mul_mont(ret, ret, x32); // 2^224 - 2^192 + 2^160 + 2^64 - 2^0
179
180 for (int i = 0; i < 30; i++) {
181 ecp_nistz256_sqr_mont(ret, ret);
182 } // 2^254 - 2^222 + 2^190 + 2^94 - 2^30
183 ecp_nistz256_mul_mont(ret, ret, x30); // 2^254 - 2^222 + 2^190 + 2^94 - 2^0
184
185 ecp_nistz256_sqr_mont(ret, ret);
186 ecp_nistz256_sqr_mont(r, ret); // 2^256 - 2^224 + 2^192 + 2^96 - 2^2
187 }
188
189 // r = p * p_scalar
ecp_nistz256_windowed_mul(const EC_GROUP * group,P256_POINT * r,const EC_RAW_POINT * p,const EC_SCALAR * p_scalar)190 static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
191 const EC_RAW_POINT *p,
192 const EC_SCALAR *p_scalar) {
193 assert(p != NULL);
194 assert(p_scalar != NULL);
195 assert(group->field.width == P256_LIMBS);
196
197 static const size_t kWindowSize = 5;
198 static const crypto_word_t kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
199
200 // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
201 // add no more than 63 bytes of overhead. Thus, |table| should require
202 // ~1599 ((96 * 16) + 63) bytes of stack space.
203 alignas(64) P256_POINT table[16];
204 uint8_t p_str[33];
205 OPENSSL_memcpy(p_str, p_scalar->bytes, 32);
206 p_str[32] = 0;
207
208 // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
209 // not stored. All other values are actually stored with an offset of -1 in
210 // table.
211 P256_POINT *row = table;
212 assert(group->field.width == P256_LIMBS);
213 OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG));
214 OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG));
215 OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG));
216
217 ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
218 ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
219 ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
220 ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
221 ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
222 ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
223 ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
224 ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
225 ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
226 ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
227 ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
228 ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
229 ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
230 ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
231 ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
232
233 BN_ULONG tmp[P256_LIMBS];
234 alignas(32) P256_POINT h;
235 size_t index = 255;
236 crypto_word_t wvalue = p_str[(index - 1) / 8];
237 wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
238
239 ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
240
241 while (index >= 5) {
242 if (index != 255) {
243 size_t off = (index - 1) / 8;
244
245 wvalue = (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8;
246 wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
247
248 wvalue = booth_recode_w5(wvalue);
249
250 ecp_nistz256_select_w5(&h, table, wvalue >> 1);
251
252 ecp_nistz256_neg(tmp, h.Y);
253 copy_conditional(h.Y, tmp, (wvalue & 1));
254
255 ecp_nistz256_point_add(r, r, &h);
256 }
257
258 index -= kWindowSize;
259
260 ecp_nistz256_point_double(r, r);
261 ecp_nistz256_point_double(r, r);
262 ecp_nistz256_point_double(r, r);
263 ecp_nistz256_point_double(r, r);
264 ecp_nistz256_point_double(r, r);
265 }
266
267 // Final window
268 wvalue = p_str[0];
269 wvalue = (wvalue << 1) & kMask;
270
271 wvalue = booth_recode_w5(wvalue);
272
273 ecp_nistz256_select_w5(&h, table, wvalue >> 1);
274
275 ecp_nistz256_neg(tmp, h.Y);
276 copy_conditional(h.Y, tmp, wvalue & 1);
277
278 ecp_nistz256_point_add(r, r, &h);
279 }
280
281 typedef union {
282 P256_POINT p;
283 P256_POINT_AFFINE a;
284 } p256_point_union_t;
285
calc_first_wvalue(size_t * index,const uint8_t p_str[33])286 static crypto_word_t calc_first_wvalue(size_t *index, const uint8_t p_str[33]) {
287 static const size_t kWindowSize = 7;
288 static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
289 *index = kWindowSize;
290
291 crypto_word_t wvalue = (p_str[0] << 1) & kMask;
292 return booth_recode_w7(wvalue);
293 }
294
calc_wvalue(size_t * index,const uint8_t p_str[33])295 static crypto_word_t calc_wvalue(size_t *index, const uint8_t p_str[33]) {
296 static const size_t kWindowSize = 7;
297 static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
298
299 const size_t off = (*index - 1) / 8;
300 crypto_word_t wvalue =
301 (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8;
302 wvalue = (wvalue >> ((*index - 1) % 8)) & kMask;
303 *index += kWindowSize;
304
305 return booth_recode_w7(wvalue);
306 }
307
ecp_nistz256_point_mul(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * p,const EC_SCALAR * scalar)308 static void ecp_nistz256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r,
309 const EC_RAW_POINT *p,
310 const EC_SCALAR *scalar) {
311 alignas(32) P256_POINT out;
312 ecp_nistz256_windowed_mul(group, &out, p, scalar);
313
314 assert(group->field.width == P256_LIMBS);
315 OPENSSL_memcpy(r->X.words, out.X, P256_LIMBS * sizeof(BN_ULONG));
316 OPENSSL_memcpy(r->Y.words, out.Y, P256_LIMBS * sizeof(BN_ULONG));
317 OPENSSL_memcpy(r->Z.words, out.Z, P256_LIMBS * sizeof(BN_ULONG));
318 }
319
ecp_nistz256_point_mul_base(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * scalar)320 static void ecp_nistz256_point_mul_base(const EC_GROUP *group, EC_RAW_POINT *r,
321 const EC_SCALAR *scalar) {
322 alignas(32) p256_point_union_t t, p;
323
324 uint8_t p_str[33];
325 OPENSSL_memcpy(p_str, scalar->bytes, 32);
326 p_str[32] = 0;
327
328 // First window
329 size_t index = 0;
330 crypto_word_t wvalue = calc_first_wvalue(&index, p_str);
331
332 ecp_nistz256_select_w7(&p.a, ecp_nistz256_precomputed[0], wvalue >> 1);
333 ecp_nistz256_neg(p.p.Z, p.p.Y);
334 copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
335
336 // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
337 // is infinity and |ONE| otherwise. |p| was computed from the table, so it
338 // is infinity iff |wvalue >> 1| is zero.
339 OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
340 copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));
341
342 for (int i = 1; i < 37; i++) {
343 wvalue = calc_wvalue(&index, p_str);
344
345 ecp_nistz256_select_w7(&t.a, ecp_nistz256_precomputed[i], wvalue >> 1);
346
347 ecp_nistz256_neg(t.p.Z, t.a.Y);
348 copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
349
350 // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
351 // are the same non-infinity point.
352 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
353 }
354
355 assert(group->field.width == P256_LIMBS);
356 OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG));
357 OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG));
358 OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG));
359 }
360
ecp_nistz256_points_mul_public(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * g_scalar,const EC_RAW_POINT * p_,const EC_SCALAR * p_scalar)361 static void ecp_nistz256_points_mul_public(const EC_GROUP *group,
362 EC_RAW_POINT *r,
363 const EC_SCALAR *g_scalar,
364 const EC_RAW_POINT *p_,
365 const EC_SCALAR *p_scalar) {
366 assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL);
367
368 alignas(32) p256_point_union_t t, p;
369 uint8_t p_str[33];
370 OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
371 p_str[32] = 0;
372
373 // First window
374 size_t index = 0;
375 size_t wvalue = calc_first_wvalue(&index, p_str);
376
377 // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
378 // is infinity and |ONE| otherwise. |p| was computed from the table, so it
379 // is infinity iff |wvalue >> 1| is zero.
380 if ((wvalue >> 1) != 0) {
381 OPENSSL_memcpy(&p.a, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1],
382 sizeof(p.a));
383 OPENSSL_memcpy(&p.p.Z, ONE, sizeof(p.p.Z));
384 } else {
385 OPENSSL_memset(&p.a, 0, sizeof(p.a));
386 OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
387 }
388
389 if ((wvalue & 1) == 1) {
390 ecp_nistz256_neg(p.p.Y, p.p.Y);
391 }
392
393 for (int i = 1; i < 37; i++) {
394 wvalue = calc_wvalue(&index, p_str);
395
396 if ((wvalue >> 1) == 0) {
397 continue;
398 }
399
400 OPENSSL_memcpy(&t.a, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1],
401 sizeof(p.a));
402
403 if ((wvalue & 1) == 1) {
404 ecp_nistz256_neg(t.a.Y, t.a.Y);
405 }
406
407 // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
408 // are the same non-infinity point, so it is important that we compute the
409 // |g_scalar| term before the |p_scalar| term.
410 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
411 }
412
413 ecp_nistz256_windowed_mul(group, &t.p, p_, p_scalar);
414 ecp_nistz256_point_add(&p.p, &p.p, &t.p);
415
416 assert(group->field.width == P256_LIMBS);
417 OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG));
418 OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG));
419 OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG));
420 }
421
ecp_nistz256_get_affine(const EC_GROUP * group,const EC_RAW_POINT * point,EC_FELEM * x,EC_FELEM * y)422 static int ecp_nistz256_get_affine(const EC_GROUP *group,
423 const EC_RAW_POINT *point, EC_FELEM *x,
424 EC_FELEM *y) {
425 if (ec_GFp_simple_is_at_infinity(group, point)) {
426 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
427 return 0;
428 }
429
430 BN_ULONG z_inv2[P256_LIMBS];
431 assert(group->field.width == P256_LIMBS);
432 ecp_nistz256_mod_inverse_sqr_mont(z_inv2, point->Z.words);
433
434 if (x != NULL) {
435 ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words);
436 }
437
438 if (y != NULL) {
439 ecp_nistz256_sqr_mont(z_inv2, z_inv2); // z^-4
440 ecp_nistz256_mul_mont(y->words, point->Y.words, point->Z.words); // y * z
441 ecp_nistz256_mul_mont(y->words, y->words, z_inv2); // y * z^-3
442 }
443
444 return 1;
445 }
446
ecp_nistz256_add(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a_,const EC_RAW_POINT * b_)447 static void ecp_nistz256_add(const EC_GROUP *group, EC_RAW_POINT *r,
448 const EC_RAW_POINT *a_, const EC_RAW_POINT *b_) {
449 P256_POINT a, b;
450 OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
451 OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
452 OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
453 OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG));
454 OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
455 OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
456 ecp_nistz256_point_add(&a, &a, &b);
457 OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
458 OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
459 OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
460 }
461
ecp_nistz256_dbl(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a_)462 static void ecp_nistz256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
463 const EC_RAW_POINT *a_) {
464 P256_POINT a;
465 OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
466 OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
467 OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
468 ecp_nistz256_point_double(&a, &a);
469 OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
470 OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
471 OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
472 }
473
ecp_nistz256_inv0_mod_ord(const EC_GROUP * group,EC_SCALAR * out,const EC_SCALAR * in)474 static void ecp_nistz256_inv0_mod_ord(const EC_GROUP *group, EC_SCALAR *out,
475 const EC_SCALAR *in) {
476 // table[i] stores a power of |in| corresponding to the matching enum value.
477 enum {
478 // The following indices specify the power in binary.
479 i_1 = 0,
480 i_10,
481 i_11,
482 i_101,
483 i_111,
484 i_1010,
485 i_1111,
486 i_10101,
487 i_101010,
488 i_101111,
489 // The following indices specify 2^N-1, or N ones in a row.
490 i_x6,
491 i_x8,
492 i_x16,
493 i_x32
494 };
495 BN_ULONG table[15][P256_LIMBS];
496
497 // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
498 //
499 // Even though this code path spares 12 squarings, 4.5%, and 13
500 // multiplications, 25%, the overall sign operation is not that much faster,
501 // not more that 2%. Most of the performance of this function comes from the
502 // scalar operations.
503
504 // Pre-calculate powers.
505 OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG));
506
507 ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
508
509 ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
510
511 ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
512
513 ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
514
515 ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
516
517 ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
518
519 ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
520 ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
521
522 ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
523
524 ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
525
526 ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
527
528 ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
529 ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
530
531 ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
532 ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
533
534 ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
535 ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
536
537 // Compute |in| raised to the order-2.
538 ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64);
539 ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]);
540 static const struct {
541 uint8_t p, i;
542 } kChain[27] = {{32, i_x32}, {6, i_101111}, {5, i_111}, {4, i_11},
543 {5, i_1111}, {5, i_10101}, {4, i_101}, {3, i_101},
544 {3, i_101}, {5, i_111}, {9, i_101111}, {6, i_1111},
545 {2, i_1}, {5, i_1}, {6, i_1111}, {5, i_111},
546 {4, i_111}, {5, i_111}, {5, i_101}, {3, i_11},
547 {10, i_101111}, {2, i_11}, {5, i_11}, {5, i_11},
548 {3, i_1}, {7, i_10101}, {6, i_1111}};
549 for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) {
550 ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p);
551 ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]);
552 }
553 }
554
ecp_nistz256_scalar_to_montgomery_inv_vartime(const EC_GROUP * group,EC_SCALAR * out,const EC_SCALAR * in)555 static int ecp_nistz256_scalar_to_montgomery_inv_vartime(const EC_GROUP *group,
556 EC_SCALAR *out,
557 const EC_SCALAR *in) {
558 if ((OPENSSL_ia32cap_get()[1] & (1 << 28)) == 0) {
559 // No AVX support; fallback to generic code.
560 return ec_simple_scalar_to_montgomery_inv_vartime(group, out, in);
561 }
562
563 assert(group->order.width == P256_LIMBS);
564 if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.d)) {
565 return 0;
566 }
567
568 // The result should be returned in the Montgomery domain.
569 ec_scalar_to_montgomery(group, out, out);
570 return 1;
571 }
572
ecp_nistz256_cmp_x_coordinate(const EC_GROUP * group,const EC_RAW_POINT * p,const EC_SCALAR * r)573 static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group,
574 const EC_RAW_POINT *p,
575 const EC_SCALAR *r) {
576 if (ec_GFp_simple_is_at_infinity(group, p)) {
577 return 0;
578 }
579
580 assert(group->order.width == P256_LIMBS);
581 assert(group->field.width == P256_LIMBS);
582
583 // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
584 // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
585 // not.
586 BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS];
587 ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words);
588 ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont);
589 ecp_nistz256_from_mont(X, p->X.words);
590
591 if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
592 return 1;
593 }
594
595 // During signing the x coefficient is reduced modulo the group order.
596 // Therefore there is a small possibility, less than 1/2^128, that group_order
597 // < p.x < P. in that case we need not only to compare against |r| but also to
598 // compare against r+group_order.
599 if (bn_less_than_words(r->words, group->field_minus_order.words,
600 P256_LIMBS)) {
601 // We can ignore the carry because: r + group_order < p < 2^256.
602 bn_add_words(r_Z2, r->words, group->order.d, P256_LIMBS);
603 ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont);
604 if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
605 return 1;
606 }
607 }
608
609 return 0;
610 }
611
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistz256_method)612 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
613 out->group_init = ec_GFp_mont_group_init;
614 out->group_finish = ec_GFp_mont_group_finish;
615 out->group_set_curve = ec_GFp_mont_group_set_curve;
616 out->point_get_affine_coordinates = ecp_nistz256_get_affine;
617 out->add = ecp_nistz256_add;
618 out->dbl = ecp_nistz256_dbl;
619 out->mul = ecp_nistz256_point_mul;
620 out->mul_base = ecp_nistz256_point_mul_base;
621 out->mul_public = ecp_nistz256_points_mul_public;
622 out->felem_mul = ec_GFp_mont_felem_mul;
623 out->felem_sqr = ec_GFp_mont_felem_sqr;
624 out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
625 out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
626 out->scalar_inv0_montgomery = ecp_nistz256_inv0_mod_ord;
627 out->scalar_to_montgomery_inv_vartime =
628 ecp_nistz256_scalar_to_montgomery_inv_vartime;
629 out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate;
630 }
631
632 #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
633 !defined(OPENSSL_SMALL) */
634