• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2014, Intel Corporation. All Rights Reserved.
4  *
5  * Licensed under the OpenSSL license (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  *
10  * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
11  * (1) Intel Corporation, Israel Development Center, Haifa, Israel
12  * (2) University of Haifa, Israel
13  *
14  * Reference:
15  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
16  *                          256 Bit Primes"
17  */
18 
19 #include <openssl/ec.h>
20 
21 #include <assert.h>
22 #include <stdint.h>
23 #include <string.h>
24 
25 #include <openssl/bn.h>
26 #include <openssl/cpu.h>
27 #include <openssl/crypto.h>
28 #include <openssl/err.h>
29 
30 #include "../bn/internal.h"
31 #include "../delocate.h"
32 #include "../../internal.h"
33 #include "internal.h"
34 #include "p256-x86_64.h"
35 
36 
37 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
38     !defined(OPENSSL_SMALL)
39 
40 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
41 
42 // One converted into the Montgomery domain
43 static const BN_ULONG ONE[P256_LIMBS] = {
44     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
45     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
46 };
47 
48 // Precomputed tables for the default generator
49 #include "p256-x86_64-table.h"
50 
51 // Recode window to a signed digit, see |ec_GFp_nistp_recode_scalar_bits| in
52 // util.c for details
booth_recode_w5(crypto_word_t in)53 static crypto_word_t booth_recode_w5(crypto_word_t in) {
54   crypto_word_t s, d;
55 
56   s = ~((in >> 5) - 1);
57   d = (1 << 6) - in - 1;
58   d = (d & s) | (in & ~s);
59   d = (d >> 1) + (d & 1);
60 
61   return (d << 1) + (s & 1);
62 }
63 
booth_recode_w7(crypto_word_t in)64 static crypto_word_t booth_recode_w7(crypto_word_t in) {
65   crypto_word_t s, d;
66 
67   s = ~((in >> 7) - 1);
68   d = (1 << 8) - in - 1;
69   d = (d & s) | (in & ~s);
70   d = (d >> 1) + (d & 1);
71 
72   return (d << 1) + (s & 1);
73 }
74 
75 // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
76 // if |move| is zero.
77 //
78 // WARNING: this breaks the usual convention of constant-time functions
79 // returning masks.
copy_conditional(BN_ULONG dst[P256_LIMBS],const BN_ULONG src[P256_LIMBS],BN_ULONG move)80 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
81                              const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
82   BN_ULONG mask1 = ((BN_ULONG)0) - move;
83   BN_ULONG mask2 = ~mask1;
84 
85   dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
86   dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
87   dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
88   dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
89   if (P256_LIMBS == 8) {
90     dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
91     dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
92     dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
93     dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
94   }
95 }
96 
97 // is_not_zero returns one iff in != 0 and zero otherwise.
98 //
99 // WARNING: this breaks the usual convention of constant-time functions
100 // returning masks.
101 //
102 // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
103 //   (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
104 // )
105 //
106 // (declare-fun x () (_ BitVec 64))
107 //
108 // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
109 // (check-sat)
110 //
111 // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
112 // (check-sat)
113 //
is_not_zero(BN_ULONG in)114 static BN_ULONG is_not_zero(BN_ULONG in) {
115   in |= (0 - in);
116   in >>= BN_BITS2 - 1;
117   return in;
118 }
119 
120 // ecp_nistz256_mod_inverse_sqr_mont sets |r| to (|in| * 2^-256)^-2 * 2^256 mod
121 // p. That is, |r| is the modular inverse square of |in| for input and output in
122 // the Montgomery domain.
ecp_nistz256_mod_inverse_sqr_mont(BN_ULONG r[P256_LIMBS],const BN_ULONG in[P256_LIMBS])123 static void ecp_nistz256_mod_inverse_sqr_mont(BN_ULONG r[P256_LIMBS],
124                                               const BN_ULONG in[P256_LIMBS]) {
125   // This implements the addition chain described in
126   // https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion
127   BN_ULONG x2[P256_LIMBS], x3[P256_LIMBS], x6[P256_LIMBS], x12[P256_LIMBS],
128       x15[P256_LIMBS], x30[P256_LIMBS], x32[P256_LIMBS];
129   ecp_nistz256_sqr_mont(x2, in);      // 2^2 - 2^1
130   ecp_nistz256_mul_mont(x2, x2, in);  // 2^2 - 2^0
131 
132   ecp_nistz256_sqr_mont(x3, x2);      // 2^3 - 2^1
133   ecp_nistz256_mul_mont(x3, x3, in);  // 2^3 - 2^0
134 
135   ecp_nistz256_sqr_mont(x6, x3);
136   for (int i = 1; i < 3; i++) {
137     ecp_nistz256_sqr_mont(x6, x6);
138   }                                   // 2^6 - 2^3
139   ecp_nistz256_mul_mont(x6, x6, x3);  // 2^6 - 2^0
140 
141   ecp_nistz256_sqr_mont(x12, x6);
142   for (int i = 1; i < 6; i++) {
143     ecp_nistz256_sqr_mont(x12, x12);
144   }                                     // 2^12 - 2^6
145   ecp_nistz256_mul_mont(x12, x12, x6);  // 2^12 - 2^0
146 
147   ecp_nistz256_sqr_mont(x15, x12);
148   for (int i = 1; i < 3; i++) {
149     ecp_nistz256_sqr_mont(x15, x15);
150   }                                     // 2^15 - 2^3
151   ecp_nistz256_mul_mont(x15, x15, x3);  // 2^15 - 2^0
152 
153   ecp_nistz256_sqr_mont(x30, x15);
154   for (int i = 1; i < 15; i++) {
155     ecp_nistz256_sqr_mont(x30, x30);
156   }                                      // 2^30 - 2^15
157   ecp_nistz256_mul_mont(x30, x30, x15);  // 2^30 - 2^0
158 
159   ecp_nistz256_sqr_mont(x32, x30);
160   ecp_nistz256_sqr_mont(x32, x32);      // 2^32 - 2^2
161   ecp_nistz256_mul_mont(x32, x32, x2);  // 2^32 - 2^0
162 
163   BN_ULONG ret[P256_LIMBS];
164   ecp_nistz256_sqr_mont(ret, x32);
165   for (int i = 1; i < 31 + 1; i++) {
166     ecp_nistz256_sqr_mont(ret, ret);
167   }                                     // 2^64 - 2^32
168   ecp_nistz256_mul_mont(ret, ret, in);  // 2^64 - 2^32 + 2^0
169 
170   for (int i = 0; i < 96 + 32; i++) {
171     ecp_nistz256_sqr_mont(ret, ret);
172   }                                      // 2^192 - 2^160 + 2^128
173   ecp_nistz256_mul_mont(ret, ret, x32);  // 2^192 - 2^160 + 2^128 + 2^32 - 2^0
174 
175   for (int i = 0; i < 32; i++) {
176     ecp_nistz256_sqr_mont(ret, ret);
177   }                                      // 2^224 - 2^192 + 2^160 + 2^64 - 2^32
178   ecp_nistz256_mul_mont(ret, ret, x32);  // 2^224 - 2^192 + 2^160 + 2^64 - 2^0
179 
180   for (int i = 0; i < 30; i++) {
181     ecp_nistz256_sqr_mont(ret, ret);
182   }                                      // 2^254 - 2^222 + 2^190 + 2^94 - 2^30
183   ecp_nistz256_mul_mont(ret, ret, x30);  // 2^254 - 2^222 + 2^190 + 2^94 - 2^0
184 
185   ecp_nistz256_sqr_mont(ret, ret);
186   ecp_nistz256_sqr_mont(r, ret);  // 2^256 - 2^224 + 2^192 + 2^96 - 2^2
187 }
188 
189 // r = p * p_scalar
ecp_nistz256_windowed_mul(const EC_GROUP * group,P256_POINT * r,const EC_RAW_POINT * p,const EC_SCALAR * p_scalar)190 static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
191                                       const EC_RAW_POINT *p,
192                                       const EC_SCALAR *p_scalar) {
193   assert(p != NULL);
194   assert(p_scalar != NULL);
195   assert(group->field.width == P256_LIMBS);
196 
197   static const size_t kWindowSize = 5;
198   static const crypto_word_t kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
199 
200   // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
201   // add no more than 63 bytes of overhead. Thus, |table| should require
202   // ~1599 ((96 * 16) + 63) bytes of stack space.
203   alignas(64) P256_POINT table[16];
204   uint8_t p_str[33];
205   OPENSSL_memcpy(p_str, p_scalar->bytes, 32);
206   p_str[32] = 0;
207 
208   // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
209   // not stored. All other values are actually stored with an offset of -1 in
210   // table.
211   P256_POINT *row = table;
212   assert(group->field.width == P256_LIMBS);
213   OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG));
214   OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG));
215   OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG));
216 
217   ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
218   ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
219   ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
220   ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
221   ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
222   ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
223   ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
224   ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
225   ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
226   ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
227   ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
228   ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
229   ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
230   ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
231   ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
232 
233   BN_ULONG tmp[P256_LIMBS];
234   alignas(32) P256_POINT h;
235   size_t index = 255;
236   crypto_word_t wvalue = p_str[(index - 1) / 8];
237   wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
238 
239   ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
240 
241   while (index >= 5) {
242     if (index != 255) {
243       size_t off = (index - 1) / 8;
244 
245       wvalue = (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8;
246       wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
247 
248       wvalue = booth_recode_w5(wvalue);
249 
250       ecp_nistz256_select_w5(&h, table, wvalue >> 1);
251 
252       ecp_nistz256_neg(tmp, h.Y);
253       copy_conditional(h.Y, tmp, (wvalue & 1));
254 
255       ecp_nistz256_point_add(r, r, &h);
256     }
257 
258     index -= kWindowSize;
259 
260     ecp_nistz256_point_double(r, r);
261     ecp_nistz256_point_double(r, r);
262     ecp_nistz256_point_double(r, r);
263     ecp_nistz256_point_double(r, r);
264     ecp_nistz256_point_double(r, r);
265   }
266 
267   // Final window
268   wvalue = p_str[0];
269   wvalue = (wvalue << 1) & kMask;
270 
271   wvalue = booth_recode_w5(wvalue);
272 
273   ecp_nistz256_select_w5(&h, table, wvalue >> 1);
274 
275   ecp_nistz256_neg(tmp, h.Y);
276   copy_conditional(h.Y, tmp, wvalue & 1);
277 
278   ecp_nistz256_point_add(r, r, &h);
279 }
280 
281 typedef union {
282   P256_POINT p;
283   P256_POINT_AFFINE a;
284 } p256_point_union_t;
285 
calc_first_wvalue(size_t * index,const uint8_t p_str[33])286 static crypto_word_t calc_first_wvalue(size_t *index, const uint8_t p_str[33]) {
287   static const size_t kWindowSize = 7;
288   static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
289   *index = kWindowSize;
290 
291   crypto_word_t wvalue = (p_str[0] << 1) & kMask;
292   return booth_recode_w7(wvalue);
293 }
294 
calc_wvalue(size_t * index,const uint8_t p_str[33])295 static crypto_word_t calc_wvalue(size_t *index, const uint8_t p_str[33]) {
296   static const size_t kWindowSize = 7;
297   static const crypto_word_t kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
298 
299   const size_t off = (*index - 1) / 8;
300   crypto_word_t wvalue =
301       (crypto_word_t)p_str[off] | (crypto_word_t)p_str[off + 1] << 8;
302   wvalue = (wvalue >> ((*index - 1) % 8)) & kMask;
303   *index += kWindowSize;
304 
305   return booth_recode_w7(wvalue);
306 }
307 
ecp_nistz256_point_mul(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * p,const EC_SCALAR * scalar)308 static void ecp_nistz256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r,
309                                    const EC_RAW_POINT *p,
310                                    const EC_SCALAR *scalar) {
311   alignas(32) P256_POINT out;
312   ecp_nistz256_windowed_mul(group, &out, p, scalar);
313 
314   assert(group->field.width == P256_LIMBS);
315   OPENSSL_memcpy(r->X.words, out.X, P256_LIMBS * sizeof(BN_ULONG));
316   OPENSSL_memcpy(r->Y.words, out.Y, P256_LIMBS * sizeof(BN_ULONG));
317   OPENSSL_memcpy(r->Z.words, out.Z, P256_LIMBS * sizeof(BN_ULONG));
318 }
319 
ecp_nistz256_point_mul_base(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * scalar)320 static void ecp_nistz256_point_mul_base(const EC_GROUP *group, EC_RAW_POINT *r,
321                                         const EC_SCALAR *scalar) {
322   alignas(32) p256_point_union_t t, p;
323 
324   uint8_t p_str[33];
325   OPENSSL_memcpy(p_str, scalar->bytes, 32);
326   p_str[32] = 0;
327 
328   // First window
329   size_t index = 0;
330   crypto_word_t wvalue = calc_first_wvalue(&index, p_str);
331 
332   ecp_nistz256_select_w7(&p.a, ecp_nistz256_precomputed[0], wvalue >> 1);
333   ecp_nistz256_neg(p.p.Z, p.p.Y);
334   copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
335 
336   // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
337   // is infinity and |ONE| otherwise. |p| was computed from the table, so it
338   // is infinity iff |wvalue >> 1| is zero.
339   OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
340   copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));
341 
342   for (int i = 1; i < 37; i++) {
343     wvalue = calc_wvalue(&index, p_str);
344 
345     ecp_nistz256_select_w7(&t.a, ecp_nistz256_precomputed[i], wvalue >> 1);
346 
347     ecp_nistz256_neg(t.p.Z, t.a.Y);
348     copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
349 
350     // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
351     // are the same non-infinity point.
352     ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
353   }
354 
355   assert(group->field.width == P256_LIMBS);
356   OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG));
357   OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG));
358   OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG));
359 }
360 
ecp_nistz256_points_mul_public(const EC_GROUP * group,EC_RAW_POINT * r,const EC_SCALAR * g_scalar,const EC_RAW_POINT * p_,const EC_SCALAR * p_scalar)361 static void ecp_nistz256_points_mul_public(const EC_GROUP *group,
362                                            EC_RAW_POINT *r,
363                                            const EC_SCALAR *g_scalar,
364                                            const EC_RAW_POINT *p_,
365                                            const EC_SCALAR *p_scalar) {
366   assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL);
367 
368   alignas(32) p256_point_union_t t, p;
369   uint8_t p_str[33];
370   OPENSSL_memcpy(p_str, g_scalar->bytes, 32);
371   p_str[32] = 0;
372 
373   // First window
374   size_t index = 0;
375   size_t wvalue = calc_first_wvalue(&index, p_str);
376 
377   // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
378   // is infinity and |ONE| otherwise. |p| was computed from the table, so it
379   // is infinity iff |wvalue >> 1| is zero.
380   if ((wvalue >> 1) != 0) {
381     OPENSSL_memcpy(&p.a, &ecp_nistz256_precomputed[0][(wvalue >> 1) - 1],
382                    sizeof(p.a));
383     OPENSSL_memcpy(&p.p.Z, ONE, sizeof(p.p.Z));
384   } else {
385     OPENSSL_memset(&p.a, 0, sizeof(p.a));
386     OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
387   }
388 
389   if ((wvalue & 1) == 1) {
390     ecp_nistz256_neg(p.p.Y, p.p.Y);
391   }
392 
393   for (int i = 1; i < 37; i++) {
394     wvalue = calc_wvalue(&index, p_str);
395 
396     if ((wvalue >> 1) == 0) {
397       continue;
398     }
399 
400     OPENSSL_memcpy(&t.a, &ecp_nistz256_precomputed[i][(wvalue >> 1) - 1],
401                    sizeof(p.a));
402 
403     if ((wvalue & 1) == 1) {
404       ecp_nistz256_neg(t.a.Y, t.a.Y);
405     }
406 
407     // Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
408     // are the same non-infinity point, so it is important that we compute the
409     // |g_scalar| term before the |p_scalar| term.
410     ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
411   }
412 
413   ecp_nistz256_windowed_mul(group, &t.p, p_, p_scalar);
414   ecp_nistz256_point_add(&p.p, &p.p, &t.p);
415 
416   assert(group->field.width == P256_LIMBS);
417   OPENSSL_memcpy(r->X.words, p.p.X, P256_LIMBS * sizeof(BN_ULONG));
418   OPENSSL_memcpy(r->Y.words, p.p.Y, P256_LIMBS * sizeof(BN_ULONG));
419   OPENSSL_memcpy(r->Z.words, p.p.Z, P256_LIMBS * sizeof(BN_ULONG));
420 }
421 
ecp_nistz256_get_affine(const EC_GROUP * group,const EC_RAW_POINT * point,EC_FELEM * x,EC_FELEM * y)422 static int ecp_nistz256_get_affine(const EC_GROUP *group,
423                                    const EC_RAW_POINT *point, EC_FELEM *x,
424                                    EC_FELEM *y) {
425   if (ec_GFp_simple_is_at_infinity(group, point)) {
426     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
427     return 0;
428   }
429 
430   BN_ULONG z_inv2[P256_LIMBS];
431   assert(group->field.width == P256_LIMBS);
432   ecp_nistz256_mod_inverse_sqr_mont(z_inv2, point->Z.words);
433 
434   if (x != NULL) {
435     ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words);
436   }
437 
438   if (y != NULL) {
439     ecp_nistz256_sqr_mont(z_inv2, z_inv2);                            // z^-4
440     ecp_nistz256_mul_mont(y->words, point->Y.words, point->Z.words);  // y * z
441     ecp_nistz256_mul_mont(y->words, y->words, z_inv2);  // y * z^-3
442   }
443 
444   return 1;
445 }
446 
ecp_nistz256_add(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a_,const EC_RAW_POINT * b_)447 static void ecp_nistz256_add(const EC_GROUP *group, EC_RAW_POINT *r,
448                              const EC_RAW_POINT *a_, const EC_RAW_POINT *b_) {
449   P256_POINT a, b;
450   OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
451   OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
452   OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
453   OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG));
454   OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
455   OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
456   ecp_nistz256_point_add(&a, &a, &b);
457   OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
458   OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
459   OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
460 }
461 
ecp_nistz256_dbl(const EC_GROUP * group,EC_RAW_POINT * r,const EC_RAW_POINT * a_)462 static void ecp_nistz256_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
463                              const EC_RAW_POINT *a_) {
464   P256_POINT a;
465   OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG));
466   OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG));
467   OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG));
468   ecp_nistz256_point_double(&a, &a);
469   OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG));
470   OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG));
471   OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG));
472 }
473 
ecp_nistz256_inv0_mod_ord(const EC_GROUP * group,EC_SCALAR * out,const EC_SCALAR * in)474 static void ecp_nistz256_inv0_mod_ord(const EC_GROUP *group, EC_SCALAR *out,
475                                       const EC_SCALAR *in) {
476   // table[i] stores a power of |in| corresponding to the matching enum value.
477   enum {
478     // The following indices specify the power in binary.
479     i_1 = 0,
480     i_10,
481     i_11,
482     i_101,
483     i_111,
484     i_1010,
485     i_1111,
486     i_10101,
487     i_101010,
488     i_101111,
489     // The following indices specify 2^N-1, or N ones in a row.
490     i_x6,
491     i_x8,
492     i_x16,
493     i_x32
494   };
495   BN_ULONG table[15][P256_LIMBS];
496 
497   // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
498   //
499   // Even though this code path spares 12 squarings, 4.5%, and 13
500   // multiplications, 25%, the overall sign operation is not that much faster,
501   // not more that 2%. Most of the performance of this function comes from the
502   // scalar operations.
503 
504   // Pre-calculate powers.
505   OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG));
506 
507   ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1);
508 
509   ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]);
510 
511   ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]);
512 
513   ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]);
514 
515   ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1);
516 
517   ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]);
518 
519   ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1);
520   ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]);
521 
522   ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1);
523 
524   ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]);
525 
526   ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]);
527 
528   ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2);
529   ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]);
530 
531   ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8);
532   ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]);
533 
534   ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16);
535   ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]);
536 
537   // Compute |in| raised to the order-2.
538   ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64);
539   ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]);
540   static const struct {
541     uint8_t p, i;
542   } kChain[27] = {{32, i_x32},    {6, i_101111}, {5, i_111},    {4, i_11},
543                   {5, i_1111},    {5, i_10101},  {4, i_101},    {3, i_101},
544                   {3, i_101},     {5, i_111},    {9, i_101111}, {6, i_1111},
545                   {2, i_1},       {5, i_1},      {6, i_1111},   {5, i_111},
546                   {4, i_111},     {5, i_111},    {5, i_101},    {3, i_11},
547                   {10, i_101111}, {2, i_11},     {5, i_11},     {5, i_11},
548                   {3, i_1},       {7, i_10101},  {6, i_1111}};
549   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) {
550     ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p);
551     ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]);
552   }
553 }
554 
ecp_nistz256_scalar_to_montgomery_inv_vartime(const EC_GROUP * group,EC_SCALAR * out,const EC_SCALAR * in)555 static int ecp_nistz256_scalar_to_montgomery_inv_vartime(const EC_GROUP *group,
556                                                  EC_SCALAR *out,
557                                                  const EC_SCALAR *in) {
558   if ((OPENSSL_ia32cap_get()[1] & (1 << 28)) == 0) {
559     // No AVX support; fallback to generic code.
560     return ec_simple_scalar_to_montgomery_inv_vartime(group, out, in);
561   }
562 
563   assert(group->order.width == P256_LIMBS);
564   if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.d)) {
565     return 0;
566   }
567 
568   // The result should be returned in the Montgomery domain.
569   ec_scalar_to_montgomery(group, out, out);
570   return 1;
571 }
572 
ecp_nistz256_cmp_x_coordinate(const EC_GROUP * group,const EC_RAW_POINT * p,const EC_SCALAR * r)573 static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group,
574                                          const EC_RAW_POINT *p,
575                                          const EC_SCALAR *r) {
576   if (ec_GFp_simple_is_at_infinity(group, p)) {
577     return 0;
578   }
579 
580   assert(group->order.width == P256_LIMBS);
581   assert(group->field.width == P256_LIMBS);
582 
583   // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
584   // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
585   // not.
586   BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS];
587   ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words);
588   ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont);
589   ecp_nistz256_from_mont(X, p->X.words);
590 
591   if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
592     return 1;
593   }
594 
595   // During signing the x coefficient is reduced modulo the group order.
596   // Therefore there is a small possibility, less than 1/2^128, that group_order
597   // < p.x < P. in that case we need not only to compare against |r| but also to
598   // compare against r+group_order.
599   if (bn_less_than_words(r->words, group->field_minus_order.words,
600                          P256_LIMBS)) {
601     // We can ignore the carry because: r + group_order < p < 2^256.
602     bn_add_words(r_Z2, r->words, group->order.d, P256_LIMBS);
603     ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont);
604     if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) {
605       return 1;
606     }
607   }
608 
609   return 0;
610 }
611 
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistz256_method)612 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
613   out->group_init = ec_GFp_mont_group_init;
614   out->group_finish = ec_GFp_mont_group_finish;
615   out->group_set_curve = ec_GFp_mont_group_set_curve;
616   out->point_get_affine_coordinates = ecp_nistz256_get_affine;
617   out->add = ecp_nistz256_add;
618   out->dbl = ecp_nistz256_dbl;
619   out->mul = ecp_nistz256_point_mul;
620   out->mul_base = ecp_nistz256_point_mul_base;
621   out->mul_public = ecp_nistz256_points_mul_public;
622   out->felem_mul = ec_GFp_mont_felem_mul;
623   out->felem_sqr = ec_GFp_mont_felem_sqr;
624   out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
625   out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
626   out->scalar_inv0_montgomery = ecp_nistz256_inv0_mod_ord;
627   out->scalar_to_montgomery_inv_vartime =
628       ecp_nistz256_scalar_to_montgomery_inv_vartime;
629   out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate;
630 }
631 
632 #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
633           !defined(OPENSSL_SMALL) */
634