1 /* ====================================================================
2 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ====================================================================
48 *
49 * This product includes cryptographic software written by Eric Young
50 * (eay@cryptsoft.com). This product includes software written by Tim
51 * Hudson (tjh@cryptsoft.com). */
52
53 #include <openssl/ecdsa.h>
54
55 #include <assert.h>
56 #include <string.h>
57
58 #include <openssl/bn.h>
59 #include <openssl/err.h>
60 #include <openssl/mem.h>
61 #include <openssl/sha.h>
62 #include <openssl/type_check.h>
63
64 #include "../bn/internal.h"
65 #include "../ec/internal.h"
66 #include "../../internal.h"
67
68
69 // digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
70 // ECDSA. Note this value is not fully reduced modulo the order, only the
71 // correct number of bits.
digest_to_scalar(const EC_GROUP * group,EC_SCALAR * out,const uint8_t * digest,size_t digest_len)72 static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
73 const uint8_t *digest, size_t digest_len) {
74 const BIGNUM *order = &group->order;
75 size_t num_bits = BN_num_bits(order);
76 // Need to truncate digest if it is too long: first truncate whole bytes.
77 size_t num_bytes = (num_bits + 7) / 8;
78 if (digest_len > num_bytes) {
79 digest_len = num_bytes;
80 }
81 OPENSSL_memset(out, 0, sizeof(EC_SCALAR));
82 for (size_t i = 0; i < digest_len; i++) {
83 out->bytes[i] = digest[digest_len - 1 - i];
84 }
85
86 // If it is still too long, truncate remaining bits with a shift.
87 if (8 * digest_len > num_bits) {
88 bn_rshift_words(out->words, out->words, 8 - (num_bits & 0x7), order->width);
89 }
90
91 // |out| now has the same bit width as |order|, but this only bounds by
92 // 2*|order|. Subtract the order if out of range.
93 //
94 // Montgomery multiplication accepts the looser bounds, so this isn't strictly
95 // necessary, but it is a cleaner abstraction and has no performance impact.
96 BN_ULONG tmp[EC_MAX_WORDS];
97 bn_reduce_once_in_place(out->words, 0 /* no carry */, order->d, tmp,
98 order->width);
99 }
100
ECDSA_SIG_new(void)101 ECDSA_SIG *ECDSA_SIG_new(void) {
102 ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
103 if (sig == NULL) {
104 return NULL;
105 }
106 sig->r = BN_new();
107 sig->s = BN_new();
108 if (sig->r == NULL || sig->s == NULL) {
109 ECDSA_SIG_free(sig);
110 return NULL;
111 }
112 return sig;
113 }
114
ECDSA_SIG_free(ECDSA_SIG * sig)115 void ECDSA_SIG_free(ECDSA_SIG *sig) {
116 if (sig == NULL) {
117 return;
118 }
119
120 BN_free(sig->r);
121 BN_free(sig->s);
122 OPENSSL_free(sig);
123 }
124
ECDSA_SIG_get0_r(const ECDSA_SIG * sig)125 const BIGNUM *ECDSA_SIG_get0_r(const ECDSA_SIG *sig) {
126 return sig->r;
127 }
128
ECDSA_SIG_get0_s(const ECDSA_SIG * sig)129 const BIGNUM *ECDSA_SIG_get0_s(const ECDSA_SIG *sig) {
130 return sig->s;
131 }
132
ECDSA_SIG_get0(const ECDSA_SIG * sig,const BIGNUM ** out_r,const BIGNUM ** out_s)133 void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
134 const BIGNUM **out_s) {
135 if (out_r != NULL) {
136 *out_r = sig->r;
137 }
138 if (out_s != NULL) {
139 *out_s = sig->s;
140 }
141 }
142
ECDSA_SIG_set0(ECDSA_SIG * sig,BIGNUM * r,BIGNUM * s)143 int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
144 if (r == NULL || s == NULL) {
145 return 0;
146 }
147 BN_free(sig->r);
148 BN_free(sig->s);
149 sig->r = r;
150 sig->s = s;
151 return 1;
152 }
153
ECDSA_do_verify(const uint8_t * digest,size_t digest_len,const ECDSA_SIG * sig,const EC_KEY * eckey)154 int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
155 const ECDSA_SIG *sig, const EC_KEY *eckey) {
156 const EC_GROUP *group = EC_KEY_get0_group(eckey);
157 const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey);
158 if (group == NULL || pub_key == NULL || sig == NULL) {
159 OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
160 return 0;
161 }
162
163 EC_SCALAR r, s, u1, u2, s_inv_mont, m;
164 if (BN_is_zero(sig->r) ||
165 !ec_bignum_to_scalar(group, &r, sig->r) ||
166 BN_is_zero(sig->s) ||
167 !ec_bignum_to_scalar(group, &s, sig->s)) {
168 OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
169 return 0;
170 }
171
172 // s_inv_mont = s^-1 in the Montgomery domain.
173 if (!ec_scalar_to_montgomery_inv_vartime(group, &s_inv_mont, &s)) {
174 OPENSSL_PUT_ERROR(ECDSA, ERR_R_INTERNAL_ERROR);
175 return 0;
176 }
177
178 // u1 = m * s^-1 mod order
179 // u2 = r * s^-1 mod order
180 //
181 // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and
182 // |u2| will be taken out of Montgomery form, as desired.
183 digest_to_scalar(group, &m, digest, digest_len);
184 ec_scalar_mul_montgomery(group, &u1, &m, &s_inv_mont);
185 ec_scalar_mul_montgomery(group, &u2, &r, &s_inv_mont);
186
187 EC_RAW_POINT point;
188 if (!ec_point_mul_scalar_public(group, &point, &u1, &pub_key->raw, &u2)) {
189 OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
190 return 0;
191 }
192
193 if (!ec_cmp_x_coordinate(group, &point, &r)) {
194 OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
195 return 0;
196 }
197
198 return 1;
199 }
200
ecdsa_sign_setup(const EC_KEY * eckey,EC_SCALAR * out_kinv_mont,EC_SCALAR * out_r,const uint8_t * digest,size_t digest_len,const EC_SCALAR * priv_key)201 static int ecdsa_sign_setup(const EC_KEY *eckey, EC_SCALAR *out_kinv_mont,
202 EC_SCALAR *out_r, const uint8_t *digest,
203 size_t digest_len, const EC_SCALAR *priv_key) {
204 // Check that the size of the group order is FIPS compliant (FIPS 186-4
205 // B.5.2).
206 const EC_GROUP *group = EC_KEY_get0_group(eckey);
207 const BIGNUM *order = EC_GROUP_get0_order(group);
208 if (BN_num_bits(order) < 160) {
209 OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
210 return 0;
211 }
212
213 int ret = 0;
214 EC_SCALAR k;
215 EC_RAW_POINT tmp_point;
216 do {
217 // Include the private key and message digest in the k generation.
218 if (eckey->fixed_k != NULL) {
219 if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) {
220 goto err;
221 }
222 if (ec_scalar_is_zero(group, &k)) {
223 OPENSSL_PUT_ERROR(ECDSA, ERR_R_INTERNAL_ERROR);
224 goto err;
225 }
226 } else {
227 // Pass a SHA512 hash of the private key and digest as additional data
228 // into the RBG. This is a hardening measure against entropy failure.
229 OPENSSL_STATIC_ASSERT(SHA512_DIGEST_LENGTH >= 32,
230 "additional_data is too large for SHA-512");
231 SHA512_CTX sha;
232 uint8_t additional_data[SHA512_DIGEST_LENGTH];
233 SHA512_Init(&sha);
234 SHA512_Update(&sha, priv_key->words, order->width * sizeof(BN_ULONG));
235 SHA512_Update(&sha, digest, digest_len);
236 SHA512_Final(additional_data, &sha);
237 if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
238 goto err;
239 }
240 }
241
242 // Compute k^-1 in the Montgomery domain. This is |ec_scalar_to_montgomery|
243 // followed by |ec_scalar_inv0_montgomery|, but |ec_scalar_inv0_montgomery|
244 // followed by |ec_scalar_from_montgomery| is equivalent and slightly more
245 // efficient. Note k is non-zero, so the inverse must exist.
246 ec_scalar_inv0_montgomery(group, out_kinv_mont, &k);
247 ec_scalar_from_montgomery(group, out_kinv_mont, out_kinv_mont);
248
249 // Compute r, the x-coordinate of generator * k.
250 if (!ec_point_mul_scalar_base(group, &tmp_point, &k) ||
251 !ec_get_x_coordinate_as_scalar(group, out_r, &tmp_point)) {
252 goto err;
253 }
254 } while (ec_scalar_is_zero(group, out_r));
255
256 ret = 1;
257
258 err:
259 OPENSSL_cleanse(&k, sizeof(k));
260 return ret;
261 }
262
ECDSA_do_sign(const uint8_t * digest,size_t digest_len,const EC_KEY * eckey)263 ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
264 const EC_KEY *eckey) {
265 if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
266 OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
267 return NULL;
268 }
269
270 const EC_GROUP *group = EC_KEY_get0_group(eckey);
271 if (group == NULL || eckey->priv_key == NULL) {
272 OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
273 return NULL;
274 }
275 const BIGNUM *order = EC_GROUP_get0_order(group);
276 const EC_SCALAR *priv_key = &eckey->priv_key->scalar;
277
278 int ok = 0;
279 ECDSA_SIG *ret = ECDSA_SIG_new();
280 EC_SCALAR kinv_mont, r_mont, s, m, tmp;
281 if (ret == NULL) {
282 OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
283 return NULL;
284 }
285
286 digest_to_scalar(group, &m, digest, digest_len);
287 for (;;) {
288 if (!ecdsa_sign_setup(eckey, &kinv_mont, &r_mont, digest, digest_len,
289 priv_key) ||
290 !bn_set_words(ret->r, r_mont.words, order->width)) {
291 goto err;
292 }
293
294 // Compute priv_key * r (mod order). Note if only one parameter is in the
295 // Montgomery domain, |ec_scalar_mod_mul_montgomery| will compute the answer
296 // in the normal domain.
297 ec_scalar_to_montgomery(group, &r_mont, &r_mont);
298 ec_scalar_mul_montgomery(group, &s, priv_key, &r_mont);
299
300 // Compute tmp = m + priv_key * r.
301 ec_scalar_add(group, &tmp, &m, &s);
302
303 // Finally, multiply s by k^-1. That was retained in Montgomery form, so the
304 // same technique as the previous multiplication works.
305 ec_scalar_mul_montgomery(group, &s, &tmp, &kinv_mont);
306 if (!bn_set_words(ret->s, s.words, order->width)) {
307 goto err;
308 }
309 if (!BN_is_zero(ret->s)) {
310 // s != 0 => we have a valid signature
311 break;
312 }
313 }
314
315 ok = 1;
316
317 err:
318 if (!ok) {
319 ECDSA_SIG_free(ret);
320 ret = NULL;
321 }
322 OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont));
323 OPENSSL_cleanse(&r_mont, sizeof(r_mont));
324 OPENSSL_cleanse(&s, sizeof(s));
325 OPENSSL_cleanse(&tmp, sizeof(tmp));
326 OPENSSL_cleanse(&m, sizeof(m));
327 return ret;
328 }
329