1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111
112 #include <openssl/ex_data.h>
113 #include <openssl/stack.h>
114 #include <openssl/thread.h>
115
116 #include <assert.h>
117 #include <string.h>
118
119 #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
120 #include <valgrind/memcheck.h>
121 #endif
122
123 #if !defined(__cplusplus)
124 #if defined(_MSC_VER)
125 #define alignas(x) __declspec(align(x))
126 #define alignof __alignof
127 #else
128 #include <stdalign.h>
129 #endif
130 #endif
131
132 #if defined(OPENSSL_THREADS) && \
133 (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
134 #include <pthread.h>
135 #define OPENSSL_PTHREADS
136 #endif
137
138 #if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
139 defined(OPENSSL_WINDOWS)
140 #define OPENSSL_WINDOWS_THREADS
141 OPENSSL_MSVC_PRAGMA(warning(push, 3))
142 #include <windows.h>
OPENSSL_MSVC_PRAGMA(warning (pop))143 OPENSSL_MSVC_PRAGMA(warning(pop))
144 #endif
145
146 #if defined(__cplusplus)
147 extern "C" {
148 #endif
149
150
151 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
152 defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
153 // OPENSSL_cpuid_setup initializes the platform-specific feature cache.
154 void OPENSSL_cpuid_setup(void);
155 #endif
156
157 #if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
158 !defined(OPENSSL_STATIC_ARMCAP)
159 // OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
160 // for unit tests. Any modifications to the value must be made after
161 // |CRYPTO_library_init| but before any other function call in BoringSSL.
162 OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
163 #endif
164
165
166 #if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
167 #define BORINGSSL_HAS_UINT128
168 typedef __int128_t int128_t;
169 typedef __uint128_t uint128_t;
170
171 // clang-cl supports __uint128_t but modulus and division don't work.
172 // https://crbug.com/787617.
173 #if !defined(_MSC_VER) || !defined(__clang__)
174 #define BORINGSSL_CAN_DIVIDE_UINT128
175 #endif
176 #endif
177
178 #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
179
180 // Have a generic fall-through for different versions of C/C++.
181 #if defined(__cplusplus) && __cplusplus >= 201703L
182 #define OPENSSL_FALLTHROUGH [[fallthrough]]
183 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
184 #define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
185 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
186 __GNUC__ >= 7
187 #define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
188 #elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
189 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
190 #elif defined(__clang__)
191 #if __has_attribute(fallthrough) && __clang_major__ >= 5
192 // Clang 3.5, at least, complains about "error: declaration does not declare
193 // anything", possibily because we put a semicolon after this macro in
194 // practice. Thus limit it to >= Clang 5, which does work.
195 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
196 #else // clang versions that do not support fallthrough.
197 #define OPENSSL_FALLTHROUGH
198 #endif
199 #else // C++11 on gcc 6, and all other cases
200 #define OPENSSL_FALLTHROUGH
201 #endif
202
203 // For convenience in testing 64-bit generic code, we allow disabling SSE2
204 // intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. x86_64 always has SSE2
205 // available, so we would otherwise need to test such code on a non-x86_64
206 // platform.
207 #if defined(__SSE2__) && !defined(OPENSSL_NO_SSE2_FOR_TESTING)
208 #define OPENSSL_SSE2
209 #endif
210
211 // buffers_alias returns one if |a| and |b| alias and zero otherwise.
212 static inline int buffers_alias(const uint8_t *a, size_t a_len,
213 const uint8_t *b, size_t b_len) {
214 // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
215 // objects are undefined whereas pointer to integer conversions are merely
216 // implementation-defined. We assume the implementation defined it in a sane
217 // way.
218 uintptr_t a_u = (uintptr_t)a;
219 uintptr_t b_u = (uintptr_t)b;
220 return a_u + a_len > b_u && b_u + b_len > a_u;
221 }
222
223
224 // Constant-time utility functions.
225 //
226 // The following methods return a bitmask of all ones (0xff...f) for true and 0
227 // for false. This is useful for choosing a value based on the result of a
228 // conditional in constant time. For example,
229 //
230 // if (a < b) {
231 // c = a;
232 // } else {
233 // c = b;
234 // }
235 //
236 // can be written as
237 //
238 // crypto_word_t lt = constant_time_lt_w(a, b);
239 // c = constant_time_select_w(lt, a, b);
240
241 // crypto_word_t is the type that most constant-time functions use. Ideally we
242 // would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
243 // pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
244 // bits. Since we want to be able to do constant-time operations on a
245 // |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
246 // word length.
247 #if defined(OPENSSL_64_BIT)
248 typedef uint64_t crypto_word_t;
249 #elif defined(OPENSSL_32_BIT)
250 typedef uint32_t crypto_word_t;
251 #else
252 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
253 #endif
254
255 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
256 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
257 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
258 #define CONSTTIME_FALSE_8 ((uint8_t)0)
259
260 // value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
261 // the returned value. This is used to mitigate compilers undoing constant-time
262 // code, until we can express our requirements directly in the language.
263 //
264 // Note the compiler is aware that |value_barrier_w| has no side effects and
265 // always has the same output for a given input. This allows it to eliminate
266 // dead code, move computations across loops, and vectorize.
267 static inline crypto_word_t value_barrier_w(crypto_word_t a) {
268 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
269 __asm__("" : "+r"(a) : /* no inputs */);
270 #endif
271 return a;
272 }
273
274 // value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
275 static inline uint32_t value_barrier_u32(uint32_t a) {
276 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
277 __asm__("" : "+r"(a) : /* no inputs */);
278 #endif
279 return a;
280 }
281
282 // value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
283 static inline uint64_t value_barrier_u64(uint64_t a) {
284 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
285 __asm__("" : "+r"(a) : /* no inputs */);
286 #endif
287 return a;
288 }
289
290 // constant_time_msb_w returns the given value with the MSB copied to all the
291 // other bits.
292 static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
293 return 0u - (a >> (sizeof(a) * 8 - 1));
294 }
295
296 // constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
297 static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
298 crypto_word_t b) {
299 // Consider the two cases of the problem:
300 // msb(a) == msb(b): a < b iff the MSB of a - b is set.
301 // msb(a) != msb(b): a < b iff the MSB of b is set.
302 //
303 // If msb(a) == msb(b) then the following evaluates as:
304 // msb(a^((a^b)|((a-b)^a))) ==
305 // msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
306 // msb(a^a^(a-b)) == (rearranging)
307 // msb(a-b) (because ∀x. x^x == 0)
308 //
309 // Else, if msb(a) != msb(b) then the following evaluates as:
310 // msb(a^((a^b)|((a-b)^a))) ==
311 // msb(a^( | ((a-b)^a))) == (because msb(a^b) == 1 and
312 // represents a value s.t. msb() = 1)
313 // msb(a^) == (because ORing with 1 results in 1)
314 // msb(b)
315 //
316 //
317 // Here is an SMT-LIB verification of this formula:
318 //
319 // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
320 // (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
321 // )
322 //
323 // (declare-fun a () (_ BitVec 32))
324 // (declare-fun b () (_ BitVec 32))
325 //
326 // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
327 // (check-sat)
328 // (get-model)
329 return constant_time_msb_w(a^((a^b)|((a-b)^a)));
330 }
331
332 // constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
333 // mask.
334 static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
335 return (uint8_t)(constant_time_lt_w(a, b));
336 }
337
338 // constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
339 static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
340 crypto_word_t b) {
341 return ~constant_time_lt_w(a, b);
342 }
343
344 // constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
345 // mask.
346 static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
347 return (uint8_t)(constant_time_ge_w(a, b));
348 }
349
350 // constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
351 static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
352 // Here is an SMT-LIB verification of this formula:
353 //
354 // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
355 // (bvand (bvnot a) (bvsub a #x00000001))
356 // )
357 //
358 // (declare-fun a () (_ BitVec 32))
359 //
360 // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
361 // (check-sat)
362 // (get-model)
363 return constant_time_msb_w(~a & (a - 1));
364 }
365
366 // constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
367 // 8-bit mask.
368 static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
369 return (uint8_t)(constant_time_is_zero_w(a));
370 }
371
372 // constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
373 static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
374 crypto_word_t b) {
375 return constant_time_is_zero_w(a ^ b);
376 }
377
378 // constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
379 // mask.
380 static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
381 return (uint8_t)(constant_time_eq_w(a, b));
382 }
383
384 // constant_time_eq_int acts like |constant_time_eq_w| but works on int
385 // values.
386 static inline crypto_word_t constant_time_eq_int(int a, int b) {
387 return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
388 }
389
390 // constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
391 // mask.
392 static inline uint8_t constant_time_eq_int_8(int a, int b) {
393 return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
394 }
395
396 // constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
397 // 1s or all 0s (as returned by the methods above), the select methods return
398 // either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
399 static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
400 crypto_word_t a,
401 crypto_word_t b) {
402 // Clang recognizes this pattern as a select. While it usually transforms it
403 // to a cmov, it sometimes further transforms it into a branch, which we do
404 // not want.
405 //
406 // Adding barriers to both |mask| and |~mask| breaks the relationship between
407 // the two, which makes the compiler stick with bitmasks.
408 return (value_barrier_w(mask) & a) | (value_barrier_w(~mask) & b);
409 }
410
411 // constant_time_select_8 acts like |constant_time_select| but operates on
412 // 8-bit values.
413 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
414 uint8_t b) {
415 return (uint8_t)(constant_time_select_w(mask, a, b));
416 }
417
418 // constant_time_select_int acts like |constant_time_select| but operates on
419 // ints.
420 static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
421 return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
422 (crypto_word_t)(b)));
423 }
424
425 #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
426
427 // CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
428 // of memory as secret. Secret data is tracked as it flows to registers and
429 // other parts of a memory. If secret data is used as a condition for a branch,
430 // or as a memory index, it will trigger warnings in valgrind.
431 #define CONSTTIME_SECRET(x, y) VALGRIND_MAKE_MEM_UNDEFINED(x, y)
432
433 // CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
434 // region of memory as public. Public data is not subject to constant-time
435 // rules.
436 #define CONSTTIME_DECLASSIFY(x, y) VALGRIND_MAKE_MEM_DEFINED(x, y)
437
438 #else
439
440 #define CONSTTIME_SECRET(x, y)
441 #define CONSTTIME_DECLASSIFY(x, y)
442
443 #endif // BORINGSSL_CONSTANT_TIME_VALIDATION
444
445
446 // Thread-safe initialisation.
447
448 #if !defined(OPENSSL_THREADS)
449 typedef uint32_t CRYPTO_once_t;
450 #define CRYPTO_ONCE_INIT 0
451 #elif defined(OPENSSL_WINDOWS_THREADS)
452 typedef INIT_ONCE CRYPTO_once_t;
453 #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
454 #elif defined(OPENSSL_PTHREADS)
455 typedef pthread_once_t CRYPTO_once_t;
456 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
457 #else
458 #error "Unknown threading library"
459 #endif
460
461 // CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
462 // concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
463 // then they will block until |init| completes, but |init| will have only been
464 // called once.
465 //
466 // The |once| argument must be a |CRYPTO_once_t| that has been initialised with
467 // the value |CRYPTO_ONCE_INIT|.
468 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
469
470
471 // Reference counting.
472
473 // CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
474 #define CRYPTO_REFCOUNT_MAX 0xffffffff
475
476 // CRYPTO_refcount_inc atomically increments the value at |*count| unless the
477 // value would overflow. It's safe for multiple threads to concurrently call
478 // this or |CRYPTO_refcount_dec_and_test_zero| on the same
479 // |CRYPTO_refcount_t|.
480 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
481
482 // CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
483 // if it's zero, it crashes the address space.
484 // if it's the maximum value, it returns zero.
485 // otherwise, it atomically decrements it and returns one iff the resulting
486 // value is zero.
487 //
488 // It's safe for multiple threads to concurrently call this or
489 // |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
490 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
491
492
493 // Locks.
494 //
495 // Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
496 // structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
497 // a global lock. A global lock must be initialised to the value
498 // |CRYPTO_STATIC_MUTEX_INIT|.
499 //
500 // |CRYPTO_MUTEX| can appear in public structures and so is defined in
501 // thread.h as a structure large enough to fit the real type. The global lock is
502 // a different type so it may be initialized with platform initializer macros.
503
504 #if !defined(OPENSSL_THREADS)
505 struct CRYPTO_STATIC_MUTEX {
506 char padding; // Empty structs have different sizes in C and C++.
507 };
508 #define CRYPTO_STATIC_MUTEX_INIT { 0 }
509 #elif defined(OPENSSL_WINDOWS_THREADS)
510 struct CRYPTO_STATIC_MUTEX {
511 SRWLOCK lock;
512 };
513 #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
514 #elif defined(OPENSSL_PTHREADS)
515 struct CRYPTO_STATIC_MUTEX {
516 pthread_rwlock_t lock;
517 };
518 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
519 #else
520 #error "Unknown threading library"
521 #endif
522
523 // CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
524 // |CRYPTO_STATIC_MUTEX|.
525 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
526
527 // CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
528 // read lock, but none may have a write lock.
529 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
530
531 // CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
532 // of lock on it.
533 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
534
535 // CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
536 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
537
538 // CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
539 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
540
541 // CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
542 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
543
544 // CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
545 // have a read lock, but none may have a write lock. The |lock| variable does
546 // not need to be initialised by any function, but must have been statically
547 // initialised with |CRYPTO_STATIC_MUTEX_INIT|.
548 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
549 struct CRYPTO_STATIC_MUTEX *lock);
550
551 // CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
552 // any type of lock on it. The |lock| variable does not need to be initialised
553 // by any function, but must have been statically initialised with
554 // |CRYPTO_STATIC_MUTEX_INIT|.
555 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
556 struct CRYPTO_STATIC_MUTEX *lock);
557
558 // CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
559 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
560 struct CRYPTO_STATIC_MUTEX *lock);
561
562 // CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
563 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
564 struct CRYPTO_STATIC_MUTEX *lock);
565
566 #if defined(__cplusplus)
567 extern "C++" {
568
569 BSSL_NAMESPACE_BEGIN
570
571 namespace internal {
572
573 // MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
574 template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
575 class MutexLockBase {
576 public:
577 explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
578 assert(mu_ != nullptr);
579 LockFunc(mu_);
580 }
581 ~MutexLockBase() { ReleaseFunc(mu_); }
582 MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
583 MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
584 delete;
585
586 private:
587 CRYPTO_MUTEX *const mu_;
588 };
589
590 } // namespace internal
591
592 using MutexWriteLock =
593 internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
594 using MutexReadLock =
595 internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
596
597 BSSL_NAMESPACE_END
598
599 } // extern "C++"
600 #endif // defined(__cplusplus)
601
602
603 // Thread local storage.
604
605 // thread_local_data_t enumerates the types of thread-local data that can be
606 // stored.
607 typedef enum {
608 OPENSSL_THREAD_LOCAL_ERR = 0,
609 OPENSSL_THREAD_LOCAL_RAND,
610 OPENSSL_THREAD_LOCAL_TEST,
611 NUM_OPENSSL_THREAD_LOCALS,
612 } thread_local_data_t;
613
614 // thread_local_destructor_t is the type of a destructor function that will be
615 // called when a thread exits and its thread-local storage needs to be freed.
616 typedef void (*thread_local_destructor_t)(void *);
617
618 // CRYPTO_get_thread_local gets the pointer value that is stored for the
619 // current thread for the given index, or NULL if none has been set.
620 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
621
622 // CRYPTO_set_thread_local sets a pointer value for the current thread at the
623 // given index. This function should only be called once per thread for a given
624 // |index|: rather than update the pointer value itself, update the data that
625 // is pointed to.
626 //
627 // The destructor function will be called when a thread exits to free this
628 // thread-local data. All calls to |CRYPTO_set_thread_local| with the same
629 // |index| should have the same |destructor| argument. The destructor may be
630 // called with a NULL argument if a thread that never set a thread-local
631 // pointer for |index|, exits. The destructor may be called concurrently with
632 // different arguments.
633 //
634 // This function returns one on success or zero on error. If it returns zero
635 // then |destructor| has been called with |value| already.
636 OPENSSL_EXPORT int CRYPTO_set_thread_local(
637 thread_local_data_t index, void *value,
638 thread_local_destructor_t destructor);
639
640
641 // ex_data
642
643 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
644
645 DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
646
647 // CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
648 // supports ex_data. It should defined as a static global within the module
649 // which defines that type.
650 typedef struct {
651 struct CRYPTO_STATIC_MUTEX lock;
652 STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
653 // num_reserved is one if the ex_data index zero is reserved for legacy
654 // |TYPE_get_app_data| functions.
655 uint8_t num_reserved;
656 } CRYPTO_EX_DATA_CLASS;
657
658 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
659 #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
660 {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
661
662 // CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
663 // it to |*out_index|. Each class of object should provide a wrapper function
664 // that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
665 // zero otherwise.
666 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
667 int *out_index, long argl,
668 void *argp,
669 CRYPTO_EX_free *free_func);
670
671 // CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
672 // of object should provide a wrapper function.
673 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
674
675 // CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
676 // if no such index exists. Each class of object should provide a wrapper
677 // function.
678 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
679
680 // CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
681 OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
682
683 // CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
684 // object of the given class.
685 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
686 void *obj, CRYPTO_EX_DATA *ad);
687
688
689 // Endianness conversions.
690
691 #if defined(__GNUC__) && __GNUC__ >= 2
692 static inline uint16_t CRYPTO_bswap2(uint16_t x) {
693 return __builtin_bswap16(x);
694 }
695
696 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
697 return __builtin_bswap32(x);
698 }
699
700 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
701 return __builtin_bswap64(x);
702 }
703 #elif defined(_MSC_VER)
704 OPENSSL_MSVC_PRAGMA(warning(push, 3))
705 #include <stdlib.h>
706 OPENSSL_MSVC_PRAGMA(warning(pop))
707 #pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort)
708 static inline uint16_t CRYPTO_bswap2(uint16_t x) {
709 return _byteswap_ushort(x);
710 }
711
712 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
713 return _byteswap_ulong(x);
714 }
715
716 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
717 return _byteswap_uint64(x);
718 }
719 #else
720 static inline uint16_t CRYPTO_bswap2(uint16_t x) {
721 return (x >> 8) | (x << 8);
722 }
723
724 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
725 x = (x >> 16) | (x << 16);
726 x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
727 return x;
728 }
729
730 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
731 return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
732 }
733 #endif
734
735
736 // Language bug workarounds.
737 //
738 // Most C standard library functions are undefined if passed NULL, even when the
739 // corresponding length is zero. This gives them (and, in turn, all functions
740 // which call them) surprising behavior on empty arrays. Some compilers will
741 // miscompile code due to this rule. See also
742 // https://www.imperialviolet.org/2016/06/26/nonnull.html
743 //
744 // These wrapper functions behave the same as the corresponding C standard
745 // functions, but behave as expected when passed NULL if the length is zero.
746 //
747 // Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
748
749 // C++ defines |memchr| as a const-correct overload.
750 #if defined(__cplusplus)
751 extern "C++" {
752
753 static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
754 if (n == 0) {
755 return NULL;
756 }
757
758 return memchr(s, c, n);
759 }
760
761 static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
762 if (n == 0) {
763 return NULL;
764 }
765
766 return memchr(s, c, n);
767 }
768
769 } // extern "C++"
770 #else // __cplusplus
771
772 static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
773 if (n == 0) {
774 return NULL;
775 }
776
777 return memchr(s, c, n);
778 }
779
780 #endif // __cplusplus
781
782 static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
783 if (n == 0) {
784 return 0;
785 }
786
787 return memcmp(s1, s2, n);
788 }
789
790 static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
791 if (n == 0) {
792 return dst;
793 }
794
795 return memcpy(dst, src, n);
796 }
797
798 static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
799 if (n == 0) {
800 return dst;
801 }
802
803 return memmove(dst, src, n);
804 }
805
806 static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
807 if (n == 0) {
808 return dst;
809 }
810
811 return memset(dst, c, n);
812 }
813
814 #if defined(BORINGSSL_FIPS)
815 // BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
816 // fails. It prevents any further cryptographic operations by the current
817 // process.
818 void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
819 #endif
820
821 // boringssl_fips_self_test runs the FIPS KAT-based self tests. It returns one
822 // on success and zero on error. The argument is the integrity hash of the FIPS
823 // module and may be used to check and write flag files to suppress duplicate
824 // self-tests. If |module_hash_len| is zero then no flag file will be checked
825 // nor written and tests will always be run.
826 int boringssl_fips_self_test(const uint8_t *module_hash,
827 size_t module_hash_len);
828
829
830 #if defined(__cplusplus)
831 } // extern C
832 #endif
833
834 #endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H
835