• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111 
112 #include <openssl/ex_data.h>
113 #include <openssl/stack.h>
114 #include <openssl/thread.h>
115 
116 #include <assert.h>
117 #include <string.h>
118 
119 #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
120 #include <valgrind/memcheck.h>
121 #endif
122 
123 #if !defined(__cplusplus)
124 #if defined(_MSC_VER)
125 #define alignas(x) __declspec(align(x))
126 #define alignof __alignof
127 #else
128 #include <stdalign.h>
129 #endif
130 #endif
131 
132 #if defined(OPENSSL_THREADS) && \
133     (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
134 #include <pthread.h>
135 #define OPENSSL_PTHREADS
136 #endif
137 
138 #if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
139     defined(OPENSSL_WINDOWS)
140 #define OPENSSL_WINDOWS_THREADS
141 OPENSSL_MSVC_PRAGMA(warning(push, 3))
142 #include <windows.h>
OPENSSL_MSVC_PRAGMA(warning (pop))143 OPENSSL_MSVC_PRAGMA(warning(pop))
144 #endif
145 
146 #if defined(__cplusplus)
147 extern "C" {
148 #endif
149 
150 
151 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
152     defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
153 // OPENSSL_cpuid_setup initializes the platform-specific feature cache.
154 void OPENSSL_cpuid_setup(void);
155 #endif
156 
157 #if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
158     !defined(OPENSSL_STATIC_ARMCAP)
159 // OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
160 // for unit tests. Any modifications to the value must be made after
161 // |CRYPTO_library_init| but before any other function call in BoringSSL.
162 OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
163 #endif
164 
165 
166 #if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
167 #define BORINGSSL_HAS_UINT128
168 typedef __int128_t int128_t;
169 typedef __uint128_t uint128_t;
170 
171 // clang-cl supports __uint128_t but modulus and division don't work.
172 // https://crbug.com/787617.
173 #if !defined(_MSC_VER) || !defined(__clang__)
174 #define BORINGSSL_CAN_DIVIDE_UINT128
175 #endif
176 #endif
177 
178 #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
179 
180 // Have a generic fall-through for different versions of C/C++.
181 #if defined(__cplusplus) && __cplusplus >= 201703L
182 #define OPENSSL_FALLTHROUGH [[fallthrough]]
183 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
184 #define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
185 #elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
186     __GNUC__ >= 7
187 #define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
188 #elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
189 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
190 #elif defined(__clang__)
191 #if __has_attribute(fallthrough) && __clang_major__ >= 5
192 // Clang 3.5, at least, complains about "error: declaration does not declare
193 // anything", possibily because we put a semicolon after this macro in
194 // practice. Thus limit it to >= Clang 5, which does work.
195 #define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
196 #else // clang versions that do not support fallthrough.
197 #define OPENSSL_FALLTHROUGH
198 #endif
199 #else // C++11 on gcc 6, and all other cases
200 #define OPENSSL_FALLTHROUGH
201 #endif
202 
203 // For convenience in testing 64-bit generic code, we allow disabling SSE2
204 // intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. x86_64 always has SSE2
205 // available, so we would otherwise need to test such code on a non-x86_64
206 // platform.
207 #if defined(__SSE2__) && !defined(OPENSSL_NO_SSE2_FOR_TESTING)
208 #define OPENSSL_SSE2
209 #endif
210 
211 // buffers_alias returns one if |a| and |b| alias and zero otherwise.
212 static inline int buffers_alias(const uint8_t *a, size_t a_len,
213                                 const uint8_t *b, size_t b_len) {
214   // Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
215   // objects are undefined whereas pointer to integer conversions are merely
216   // implementation-defined. We assume the implementation defined it in a sane
217   // way.
218   uintptr_t a_u = (uintptr_t)a;
219   uintptr_t b_u = (uintptr_t)b;
220   return a_u + a_len > b_u && b_u + b_len > a_u;
221 }
222 
223 
224 // Constant-time utility functions.
225 //
226 // The following methods return a bitmask of all ones (0xff...f) for true and 0
227 // for false. This is useful for choosing a value based on the result of a
228 // conditional in constant time. For example,
229 //
230 // if (a < b) {
231 //   c = a;
232 // } else {
233 //   c = b;
234 // }
235 //
236 // can be written as
237 //
238 // crypto_word_t lt = constant_time_lt_w(a, b);
239 // c = constant_time_select_w(lt, a, b);
240 
241 // crypto_word_t is the type that most constant-time functions use. Ideally we
242 // would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
243 // pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
244 // bits. Since we want to be able to do constant-time operations on a
245 // |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
246 // word length.
247 #if defined(OPENSSL_64_BIT)
248 typedef uint64_t crypto_word_t;
249 #elif defined(OPENSSL_32_BIT)
250 typedef uint32_t crypto_word_t;
251 #else
252 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
253 #endif
254 
255 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
256 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
257 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
258 #define CONSTTIME_FALSE_8 ((uint8_t)0)
259 
260 // value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
261 // the returned value. This is used to mitigate compilers undoing constant-time
262 // code, until we can express our requirements directly in the language.
263 //
264 // Note the compiler is aware that |value_barrier_w| has no side effects and
265 // always has the same output for a given input. This allows it to eliminate
266 // dead code, move computations across loops, and vectorize.
267 static inline crypto_word_t value_barrier_w(crypto_word_t a) {
268 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
269   __asm__("" : "+r"(a) : /* no inputs */);
270 #endif
271   return a;
272 }
273 
274 // value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
275 static inline uint32_t value_barrier_u32(uint32_t a) {
276 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
277   __asm__("" : "+r"(a) : /* no inputs */);
278 #endif
279   return a;
280 }
281 
282 // value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
283 static inline uint64_t value_barrier_u64(uint64_t a) {
284 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
285   __asm__("" : "+r"(a) : /* no inputs */);
286 #endif
287   return a;
288 }
289 
290 // constant_time_msb_w returns the given value with the MSB copied to all the
291 // other bits.
292 static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
293   return 0u - (a >> (sizeof(a) * 8 - 1));
294 }
295 
296 // constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
297 static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
298                                                crypto_word_t b) {
299   // Consider the two cases of the problem:
300   //   msb(a) == msb(b): a < b iff the MSB of a - b is set.
301   //   msb(a) != msb(b): a < b iff the MSB of b is set.
302   //
303   // If msb(a) == msb(b) then the following evaluates as:
304   //   msb(a^((a^b)|((a-b)^a))) ==
305   //   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
306   //   msb(a^a^(a-b))           ==   (rearranging)
307   //   msb(a-b)                      (because ∀x. x^x == 0)
308   //
309   // Else, if msb(a) != msb(b) then the following evaluates as:
310   //   msb(a^((a^b)|((a-b)^a))) ==
311   //   msb(a^(�� | ((a-b)^a)))   ==   (because msb(a^b) == 1 and ��
312   //                                  represents a value s.t. msb(��) = 1)
313   //   msb(a^��)                 ==   (because ORing with 1 results in 1)
314   //   msb(b)
315   //
316   //
317   // Here is an SMT-LIB verification of this formula:
318   //
319   // (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
320   //   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
321   // )
322   //
323   // (declare-fun a () (_ BitVec 32))
324   // (declare-fun b () (_ BitVec 32))
325   //
326   // (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
327   // (check-sat)
328   // (get-model)
329   return constant_time_msb_w(a^((a^b)|((a-b)^a)));
330 }
331 
332 // constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
333 // mask.
334 static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
335   return (uint8_t)(constant_time_lt_w(a, b));
336 }
337 
338 // constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
339 static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
340                                                crypto_word_t b) {
341   return ~constant_time_lt_w(a, b);
342 }
343 
344 // constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
345 // mask.
346 static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
347   return (uint8_t)(constant_time_ge_w(a, b));
348 }
349 
350 // constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
351 static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
352   // Here is an SMT-LIB verification of this formula:
353   //
354   // (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
355   //   (bvand (bvnot a) (bvsub a #x00000001))
356   // )
357   //
358   // (declare-fun a () (_ BitVec 32))
359   //
360   // (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
361   // (check-sat)
362   // (get-model)
363   return constant_time_msb_w(~a & (a - 1));
364 }
365 
366 // constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
367 // 8-bit mask.
368 static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
369   return (uint8_t)(constant_time_is_zero_w(a));
370 }
371 
372 // constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
373 static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
374                                                crypto_word_t b) {
375   return constant_time_is_zero_w(a ^ b);
376 }
377 
378 // constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
379 // mask.
380 static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
381   return (uint8_t)(constant_time_eq_w(a, b));
382 }
383 
384 // constant_time_eq_int acts like |constant_time_eq_w| but works on int
385 // values.
386 static inline crypto_word_t constant_time_eq_int(int a, int b) {
387   return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
388 }
389 
390 // constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
391 // mask.
392 static inline uint8_t constant_time_eq_int_8(int a, int b) {
393   return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
394 }
395 
396 // constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
397 // 1s or all 0s (as returned by the methods above), the select methods return
398 // either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
399 static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
400                                                    crypto_word_t a,
401                                                    crypto_word_t b) {
402   // Clang recognizes this pattern as a select. While it usually transforms it
403   // to a cmov, it sometimes further transforms it into a branch, which we do
404   // not want.
405   //
406   // Adding barriers to both |mask| and |~mask| breaks the relationship between
407   // the two, which makes the compiler stick with bitmasks.
408   return (value_barrier_w(mask) & a) | (value_barrier_w(~mask) & b);
409 }
410 
411 // constant_time_select_8 acts like |constant_time_select| but operates on
412 // 8-bit values.
413 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
414                                              uint8_t b) {
415   return (uint8_t)(constant_time_select_w(mask, a, b));
416 }
417 
418 // constant_time_select_int acts like |constant_time_select| but operates on
419 // ints.
420 static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
421   return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
422                                       (crypto_word_t)(b)));
423 }
424 
425 #if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
426 
427 // CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
428 // of memory as secret. Secret data is tracked as it flows to registers and
429 // other parts of a memory. If secret data is used as a condition for a branch,
430 // or as a memory index, it will trigger warnings in valgrind.
431 #define CONSTTIME_SECRET(x, y) VALGRIND_MAKE_MEM_UNDEFINED(x, y)
432 
433 // CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
434 // region of memory as public. Public data is not subject to constant-time
435 // rules.
436 #define CONSTTIME_DECLASSIFY(x, y) VALGRIND_MAKE_MEM_DEFINED(x, y)
437 
438 #else
439 
440 #define CONSTTIME_SECRET(x, y)
441 #define CONSTTIME_DECLASSIFY(x, y)
442 
443 #endif  // BORINGSSL_CONSTANT_TIME_VALIDATION
444 
445 
446 // Thread-safe initialisation.
447 
448 #if !defined(OPENSSL_THREADS)
449 typedef uint32_t CRYPTO_once_t;
450 #define CRYPTO_ONCE_INIT 0
451 #elif defined(OPENSSL_WINDOWS_THREADS)
452 typedef INIT_ONCE CRYPTO_once_t;
453 #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
454 #elif defined(OPENSSL_PTHREADS)
455 typedef pthread_once_t CRYPTO_once_t;
456 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
457 #else
458 #error "Unknown threading library"
459 #endif
460 
461 // CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
462 // concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
463 // then they will block until |init| completes, but |init| will have only been
464 // called once.
465 //
466 // The |once| argument must be a |CRYPTO_once_t| that has been initialised with
467 // the value |CRYPTO_ONCE_INIT|.
468 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
469 
470 
471 // Reference counting.
472 
473 // CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
474 #define CRYPTO_REFCOUNT_MAX 0xffffffff
475 
476 // CRYPTO_refcount_inc atomically increments the value at |*count| unless the
477 // value would overflow. It's safe for multiple threads to concurrently call
478 // this or |CRYPTO_refcount_dec_and_test_zero| on the same
479 // |CRYPTO_refcount_t|.
480 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
481 
482 // CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
483 //   if it's zero, it crashes the address space.
484 //   if it's the maximum value, it returns zero.
485 //   otherwise, it atomically decrements it and returns one iff the resulting
486 //       value is zero.
487 //
488 // It's safe for multiple threads to concurrently call this or
489 // |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
490 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
491 
492 
493 // Locks.
494 //
495 // Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
496 // structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
497 // a global lock. A global lock must be initialised to the value
498 // |CRYPTO_STATIC_MUTEX_INIT|.
499 //
500 // |CRYPTO_MUTEX| can appear in public structures and so is defined in
501 // thread.h as a structure large enough to fit the real type. The global lock is
502 // a different type so it may be initialized with platform initializer macros.
503 
504 #if !defined(OPENSSL_THREADS)
505 struct CRYPTO_STATIC_MUTEX {
506   char padding;  // Empty structs have different sizes in C and C++.
507 };
508 #define CRYPTO_STATIC_MUTEX_INIT { 0 }
509 #elif defined(OPENSSL_WINDOWS_THREADS)
510 struct CRYPTO_STATIC_MUTEX {
511   SRWLOCK lock;
512 };
513 #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
514 #elif defined(OPENSSL_PTHREADS)
515 struct CRYPTO_STATIC_MUTEX {
516   pthread_rwlock_t lock;
517 };
518 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
519 #else
520 #error "Unknown threading library"
521 #endif
522 
523 // CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
524 // |CRYPTO_STATIC_MUTEX|.
525 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
526 
527 // CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
528 // read lock, but none may have a write lock.
529 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
530 
531 // CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
532 // of lock on it.
533 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
534 
535 // CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
536 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
537 
538 // CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
539 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
540 
541 // CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
542 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
543 
544 // CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
545 // have a read lock, but none may have a write lock. The |lock| variable does
546 // not need to be initialised by any function, but must have been statically
547 // initialised with |CRYPTO_STATIC_MUTEX_INIT|.
548 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
549     struct CRYPTO_STATIC_MUTEX *lock);
550 
551 // CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
552 // any type of lock on it.  The |lock| variable does not need to be initialised
553 // by any function, but must have been statically initialised with
554 // |CRYPTO_STATIC_MUTEX_INIT|.
555 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
556     struct CRYPTO_STATIC_MUTEX *lock);
557 
558 // CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
559 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
560     struct CRYPTO_STATIC_MUTEX *lock);
561 
562 // CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
563 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
564     struct CRYPTO_STATIC_MUTEX *lock);
565 
566 #if defined(__cplusplus)
567 extern "C++" {
568 
569 BSSL_NAMESPACE_BEGIN
570 
571 namespace internal {
572 
573 // MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
574 template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
575 class MutexLockBase {
576  public:
577   explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
578     assert(mu_ != nullptr);
579     LockFunc(mu_);
580   }
581   ~MutexLockBase() { ReleaseFunc(mu_); }
582   MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
583   MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
584       delete;
585 
586  private:
587   CRYPTO_MUTEX *const mu_;
588 };
589 
590 }  // namespace internal
591 
592 using MutexWriteLock =
593     internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
594 using MutexReadLock =
595     internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
596 
597 BSSL_NAMESPACE_END
598 
599 }  // extern "C++"
600 #endif  // defined(__cplusplus)
601 
602 
603 // Thread local storage.
604 
605 // thread_local_data_t enumerates the types of thread-local data that can be
606 // stored.
607 typedef enum {
608   OPENSSL_THREAD_LOCAL_ERR = 0,
609   OPENSSL_THREAD_LOCAL_RAND,
610   OPENSSL_THREAD_LOCAL_TEST,
611   NUM_OPENSSL_THREAD_LOCALS,
612 } thread_local_data_t;
613 
614 // thread_local_destructor_t is the type of a destructor function that will be
615 // called when a thread exits and its thread-local storage needs to be freed.
616 typedef void (*thread_local_destructor_t)(void *);
617 
618 // CRYPTO_get_thread_local gets the pointer value that is stored for the
619 // current thread for the given index, or NULL if none has been set.
620 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
621 
622 // CRYPTO_set_thread_local sets a pointer value for the current thread at the
623 // given index. This function should only be called once per thread for a given
624 // |index|: rather than update the pointer value itself, update the data that
625 // is pointed to.
626 //
627 // The destructor function will be called when a thread exits to free this
628 // thread-local data. All calls to |CRYPTO_set_thread_local| with the same
629 // |index| should have the same |destructor| argument. The destructor may be
630 // called with a NULL argument if a thread that never set a thread-local
631 // pointer for |index|, exits. The destructor may be called concurrently with
632 // different arguments.
633 //
634 // This function returns one on success or zero on error. If it returns zero
635 // then |destructor| has been called with |value| already.
636 OPENSSL_EXPORT int CRYPTO_set_thread_local(
637     thread_local_data_t index, void *value,
638     thread_local_destructor_t destructor);
639 
640 
641 // ex_data
642 
643 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
644 
645 DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
646 
647 // CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
648 // supports ex_data. It should defined as a static global within the module
649 // which defines that type.
650 typedef struct {
651   struct CRYPTO_STATIC_MUTEX lock;
652   STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
653   // num_reserved is one if the ex_data index zero is reserved for legacy
654   // |TYPE_get_app_data| functions.
655   uint8_t num_reserved;
656 } CRYPTO_EX_DATA_CLASS;
657 
658 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
659 #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
660     {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
661 
662 // CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
663 // it to |*out_index|. Each class of object should provide a wrapper function
664 // that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
665 // zero otherwise.
666 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
667                                            int *out_index, long argl,
668                                            void *argp,
669                                            CRYPTO_EX_free *free_func);
670 
671 // CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
672 // of object should provide a wrapper function.
673 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
674 
675 // CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
676 // if no such index exists. Each class of object should provide a wrapper
677 // function.
678 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
679 
680 // CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
681 OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
682 
683 // CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
684 // object of the given class.
685 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
686                                         void *obj, CRYPTO_EX_DATA *ad);
687 
688 
689 // Endianness conversions.
690 
691 #if defined(__GNUC__) && __GNUC__ >= 2
692 static inline uint16_t CRYPTO_bswap2(uint16_t x) {
693   return __builtin_bswap16(x);
694 }
695 
696 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
697   return __builtin_bswap32(x);
698 }
699 
700 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
701   return __builtin_bswap64(x);
702 }
703 #elif defined(_MSC_VER)
704 OPENSSL_MSVC_PRAGMA(warning(push, 3))
705 #include <stdlib.h>
706 OPENSSL_MSVC_PRAGMA(warning(pop))
707 #pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort)
708 static inline uint16_t CRYPTO_bswap2(uint16_t x) {
709   return _byteswap_ushort(x);
710 }
711 
712 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
713   return _byteswap_ulong(x);
714 }
715 
716 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
717   return _byteswap_uint64(x);
718 }
719 #else
720 static inline uint16_t CRYPTO_bswap2(uint16_t x) {
721   return (x >> 8) | (x << 8);
722 }
723 
724 static inline uint32_t CRYPTO_bswap4(uint32_t x) {
725   x = (x >> 16) | (x << 16);
726   x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
727   return x;
728 }
729 
730 static inline uint64_t CRYPTO_bswap8(uint64_t x) {
731   return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
732 }
733 #endif
734 
735 
736 // Language bug workarounds.
737 //
738 // Most C standard library functions are undefined if passed NULL, even when the
739 // corresponding length is zero. This gives them (and, in turn, all functions
740 // which call them) surprising behavior on empty arrays. Some compilers will
741 // miscompile code due to this rule. See also
742 // https://www.imperialviolet.org/2016/06/26/nonnull.html
743 //
744 // These wrapper functions behave the same as the corresponding C standard
745 // functions, but behave as expected when passed NULL if the length is zero.
746 //
747 // Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
748 
749 // C++ defines |memchr| as a const-correct overload.
750 #if defined(__cplusplus)
751 extern "C++" {
752 
753 static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
754   if (n == 0) {
755     return NULL;
756   }
757 
758   return memchr(s, c, n);
759 }
760 
761 static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
762   if (n == 0) {
763     return NULL;
764   }
765 
766   return memchr(s, c, n);
767 }
768 
769 }  // extern "C++"
770 #else  // __cplusplus
771 
772 static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
773   if (n == 0) {
774     return NULL;
775   }
776 
777   return memchr(s, c, n);
778 }
779 
780 #endif  // __cplusplus
781 
782 static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
783   if (n == 0) {
784     return 0;
785   }
786 
787   return memcmp(s1, s2, n);
788 }
789 
790 static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
791   if (n == 0) {
792     return dst;
793   }
794 
795   return memcpy(dst, src, n);
796 }
797 
798 static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
799   if (n == 0) {
800     return dst;
801   }
802 
803   return memmove(dst, src, n);
804 }
805 
806 static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
807   if (n == 0) {
808     return dst;
809   }
810 
811   return memset(dst, c, n);
812 }
813 
814 #if defined(BORINGSSL_FIPS)
815 // BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
816 // fails. It prevents any further cryptographic operations by the current
817 // process.
818 void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
819 #endif
820 
821 // boringssl_fips_self_test runs the FIPS KAT-based self tests. It returns one
822 // on success and zero on error. The argument is the integrity hash of the FIPS
823 // module and may be used to check and write flag files to suppress duplicate
824 // self-tests. If |module_hash_len| is zero then no flag file will be checked
825 // nor written and tests will always be run.
826 int boringssl_fips_self_test(const uint8_t *module_hash,
827                              size_t module_hash_len);
828 
829 
830 #if defined(__cplusplus)
831 }  // extern C
832 #endif
833 
834 #endif  // OPENSSL_HEADER_CRYPTO_INTERNAL_H
835