1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]. */
56
57 #include <openssl/cast.h>
58 #include <openssl/cipher.h>
59 #include <openssl/obj.h>
60
61 #if defined(OPENSSL_WINDOWS)
62 OPENSSL_MSVC_PRAGMA(warning(push, 3))
63 #include <intrin.h>
OPENSSL_MSVC_PRAGMA(warning (pop))64 OPENSSL_MSVC_PRAGMA(warning(pop))
65 #endif
66
67 #include "../../crypto/internal.h"
68 #include "internal.h"
69 #include "../macros.h"
70
71
72 void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks,
73 int enc) {
74 uint32_t d[2];
75
76 n2l(in, d[0]);
77 n2l(in, d[1]);
78 if (enc) {
79 CAST_encrypt(d, ks);
80 } else {
81 CAST_decrypt(d, ks);
82 }
83 l2n(d[0], out);
84 l2n(d[1], out);
85 }
86
87 #if defined(OPENSSL_WINDOWS) && defined(_MSC_VER)
88 #define ROTL(a, n) (_lrotl(a, n))
89 #else
90 #define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL)
91 #endif
92
93 #define E_CAST(n, key, L, R, OP1, OP2, OP3) \
94 { \
95 uint32_t a, b, c, d; \
96 t = (key[n * 2] OP1 R) & 0xffffffff; \
97 t = ROTL(t, (key[n * 2 + 1])); \
98 a = CAST_S_table0[(t >> 8) & 0xff]; \
99 b = CAST_S_table1[(t)&0xff]; \
100 c = CAST_S_table2[(t >> 24) & 0xff]; \
101 d = CAST_S_table3[(t >> 16) & 0xff]; \
102 L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \
103 }
104
CAST_encrypt(uint32_t * data,const CAST_KEY * key)105 void CAST_encrypt(uint32_t *data, const CAST_KEY *key) {
106 uint32_t l, r, t;
107 const uint32_t *k;
108
109 k = &key->data[0];
110 l = data[0];
111 r = data[1];
112
113 E_CAST(0, k, l, r, +, ^, -);
114 E_CAST(1, k, r, l, ^, -, +);
115 E_CAST(2, k, l, r, -, +, ^);
116 E_CAST(3, k, r, l, +, ^, -);
117 E_CAST(4, k, l, r, ^, -, +);
118 E_CAST(5, k, r, l, -, +, ^);
119 E_CAST(6, k, l, r, +, ^, -);
120 E_CAST(7, k, r, l, ^, -, +);
121 E_CAST(8, k, l, r, -, +, ^);
122 E_CAST(9, k, r, l, +, ^, -);
123 E_CAST(10, k, l, r, ^, -, +);
124 E_CAST(11, k, r, l, -, +, ^);
125
126 if (!key->short_key) {
127 E_CAST(12, k, l, r, +, ^, -);
128 E_CAST(13, k, r, l, ^, -, +);
129 E_CAST(14, k, l, r, -, +, ^);
130 E_CAST(15, k, r, l, +, ^, -);
131 }
132
133 data[1] = l & 0xffffffffL;
134 data[0] = r & 0xffffffffL;
135 }
136
CAST_decrypt(uint32_t * data,const CAST_KEY * key)137 void CAST_decrypt(uint32_t *data, const CAST_KEY *key) {
138 uint32_t l, r, t;
139 const uint32_t *k;
140
141 k = &key->data[0];
142 l = data[0];
143 r = data[1];
144
145 if (!key->short_key) {
146 E_CAST(15, k, l, r, +, ^, -);
147 E_CAST(14, k, r, l, -, +, ^);
148 E_CAST(13, k, l, r, ^, -, +);
149 E_CAST(12, k, r, l, +, ^, -);
150 }
151
152 E_CAST(11, k, l, r, -, +, ^);
153 E_CAST(10, k, r, l, ^, -, +);
154 E_CAST(9, k, l, r, +, ^, -);
155 E_CAST(8, k, r, l, -, +, ^);
156 E_CAST(7, k, l, r, ^, -, +);
157 E_CAST(6, k, r, l, +, ^, -);
158 E_CAST(5, k, l, r, -, +, ^);
159 E_CAST(4, k, r, l, ^, -, +);
160 E_CAST(3, k, l, r, +, ^, -);
161 E_CAST(2, k, r, l, -, +, ^);
162 E_CAST(1, k, l, r, ^, -, +);
163 E_CAST(0, k, r, l, +, ^, -);
164
165 data[1] = l & 0xffffffffL;
166 data[0] = r & 0xffffffffL;
167 }
168
CAST_cbc_encrypt(const uint8_t * in,uint8_t * out,size_t length,const CAST_KEY * ks,uint8_t * iv,int enc)169 void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
170 const CAST_KEY *ks, uint8_t *iv, int enc) {
171 uint32_t tin0, tin1;
172 uint32_t tout0, tout1, xor0, xor1;
173 size_t l = length;
174 uint32_t tin[2];
175
176 if (enc) {
177 n2l(iv, tout0);
178 n2l(iv, tout1);
179 iv -= 8;
180 while (l >= 8) {
181 n2l(in, tin0);
182 n2l(in, tin1);
183 tin0 ^= tout0;
184 tin1 ^= tout1;
185 tin[0] = tin0;
186 tin[1] = tin1;
187 CAST_encrypt(tin, ks);
188 tout0 = tin[0];
189 tout1 = tin[1];
190 l2n(tout0, out);
191 l2n(tout1, out);
192 l -= 8;
193 }
194 if (l != 0) {
195 n2ln(in, tin0, tin1, l);
196 tin0 ^= tout0;
197 tin1 ^= tout1;
198 tin[0] = tin0;
199 tin[1] = tin1;
200 CAST_encrypt(tin, ks);
201 tout0 = tin[0];
202 tout1 = tin[1];
203 l2n(tout0, out);
204 l2n(tout1, out);
205 }
206 l2n(tout0, iv);
207 l2n(tout1, iv);
208 } else {
209 n2l(iv, xor0);
210 n2l(iv, xor1);
211 iv -= 8;
212 while (l >= 8) {
213 n2l(in, tin0);
214 n2l(in, tin1);
215 tin[0] = tin0;
216 tin[1] = tin1;
217 CAST_decrypt(tin, ks);
218 tout0 = tin[0] ^ xor0;
219 tout1 = tin[1] ^ xor1;
220 l2n(tout0, out);
221 l2n(tout1, out);
222 xor0 = tin0;
223 xor1 = tin1;
224 l -= 8;
225 }
226 if (l != 0) {
227 n2l(in, tin0);
228 n2l(in, tin1);
229 tin[0] = tin0;
230 tin[1] = tin1;
231 CAST_decrypt(tin, ks);
232 tout0 = tin[0] ^ xor0;
233 tout1 = tin[1] ^ xor1;
234 l2nn(tout0, tout1, out, l);
235 xor0 = tin0;
236 xor1 = tin1;
237 }
238 l2n(xor0, iv);
239 l2n(xor1, iv);
240 }
241 tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
242 tin[0] = tin[1] = 0;
243 }
244
245 #define CAST_exp(l, A, a, n) \
246 A[n / 4] = l; \
247 a[n + 3] = (l)&0xff; \
248 a[n + 2] = (l >> 8) & 0xff; \
249 a[n + 1] = (l >> 16) & 0xff; \
250 a[n + 0] = (l >> 24) & 0xff;
251 #define S4 CAST_S_table4
252 #define S5 CAST_S_table5
253 #define S6 CAST_S_table6
254 #define S7 CAST_S_table7
255
CAST_set_key(CAST_KEY * key,size_t len,const uint8_t * data)256 void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) {
257 uint32_t x[16];
258 uint32_t z[16];
259 uint32_t k[32];
260 uint32_t X[4], Z[4];
261 uint32_t l, *K;
262 size_t i;
263
264 for (i = 0; i < 16; i++) {
265 x[i] = 0;
266 }
267
268 if (len > 16) {
269 len = 16;
270 }
271
272 for (i = 0; i < len; i++) {
273 x[i] = data[i];
274 }
275
276 if (len <= 10) {
277 key->short_key = 1;
278 } else {
279 key->short_key = 0;
280 }
281
282 K = &k[0];
283 X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL;
284 X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL;
285 X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL;
286 X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL;
287
288 for (;;) {
289 l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
290 CAST_exp(l, Z, z, 0);
291 l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
292 CAST_exp(l, Z, z, 4);
293 l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
294 CAST_exp(l, Z, z, 8);
295 l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
296 CAST_exp(l, Z, z, 12);
297
298 K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]];
299 K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]];
300 K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]];
301 K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]];
302
303 l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
304 CAST_exp(l, X, x, 0);
305 l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
306 CAST_exp(l, X, x, 4);
307 l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
308 CAST_exp(l, X, x, 8);
309 l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
310 CAST_exp(l, X, x, 12);
311
312 K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]];
313 K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]];
314 K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]];
315 K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]];
316
317 l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
318 CAST_exp(l, Z, z, 0);
319 l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
320 CAST_exp(l, Z, z, 4);
321 l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
322 CAST_exp(l, Z, z, 8);
323 l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
324 CAST_exp(l, Z, z, 12);
325
326 K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]];
327 K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]];
328 K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]];
329 K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]];
330
331 l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
332 CAST_exp(l, X, x, 0);
333 l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
334 CAST_exp(l, X, x, 4);
335 l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
336 CAST_exp(l, X, x, 8);
337 l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
338 CAST_exp(l, X, x, 12);
339
340 K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]];
341 K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]];
342 K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]];
343 K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]];
344 if (K != k) {
345 break;
346 }
347 K += 16;
348 }
349
350 for (i = 0; i < 16; i++) {
351 key->data[i * 2] = k[i];
352 key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f;
353 }
354 }
355
356 // The input and output encrypted as though 64bit cfb mode is being used. The
357 // extra state information to record how much of the 64bit block we have used
358 // is contained in *num.
CAST_cfb64_encrypt(const uint8_t * in,uint8_t * out,size_t length,const CAST_KEY * schedule,uint8_t * ivec,int * num,int enc)359 void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, size_t length,
360 const CAST_KEY *schedule, uint8_t *ivec, int *num,
361 int enc) {
362 uint32_t v0, v1, t;
363 int n = *num;
364 size_t l = length;
365 uint32_t ti[2];
366 uint8_t *iv, c, cc;
367
368 iv = ivec;
369 if (enc) {
370 while (l--) {
371 if (n == 0) {
372 n2l(iv, v0);
373 ti[0] = v0;
374 n2l(iv, v1);
375 ti[1] = v1;
376 CAST_encrypt((uint32_t *)ti, schedule);
377 iv = ivec;
378 t = ti[0];
379 l2n(t, iv);
380 t = ti[1];
381 l2n(t, iv);
382 iv = ivec;
383 }
384 c = *(in++) ^ iv[n];
385 *(out++) = c;
386 iv[n] = c;
387 n = (n + 1) & 0x07;
388 }
389 } else {
390 while (l--) {
391 if (n == 0) {
392 n2l(iv, v0);
393 ti[0] = v0;
394 n2l(iv, v1);
395 ti[1] = v1;
396 CAST_encrypt((uint32_t *)ti, schedule);
397 iv = ivec;
398 t = ti[0];
399 l2n(t, iv);
400 t = ti[1];
401 l2n(t, iv);
402 iv = ivec;
403 }
404 cc = *(in++);
405 c = iv[n];
406 iv[n] = cc;
407 *(out++) = c ^ cc;
408 n = (n + 1) & 0x07;
409 }
410 }
411 v0 = v1 = ti[0] = ti[1] = t = c = cc = 0;
412 *num = n;
413 }
414
cast_init_key(EVP_CIPHER_CTX * ctx,const uint8_t * key,const uint8_t * iv,int enc)415 static int cast_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
416 const uint8_t *iv, int enc) {
417 CAST_KEY *cast_key = ctx->cipher_data;
418 CAST_set_key(cast_key, ctx->key_len, key);
419 return 1;
420 }
421
cast_ecb_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)422 static int cast_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
423 size_t len) {
424 CAST_KEY *cast_key = ctx->cipher_data;
425
426 while (len >= CAST_BLOCK) {
427 CAST_ecb_encrypt(in, out, cast_key, ctx->encrypt);
428 in += CAST_BLOCK;
429 out += CAST_BLOCK;
430 len -= CAST_BLOCK;
431 }
432 assert(len == 0);
433
434 return 1;
435 }
436
cast_cbc_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)437 static int cast_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
438 size_t len) {
439 CAST_KEY *cast_key = ctx->cipher_data;
440 CAST_cbc_encrypt(in, out, len, cast_key, ctx->iv, ctx->encrypt);
441 return 1;
442 }
443
444 static const EVP_CIPHER cast5_ecb = {
445 NID_cast5_ecb, CAST_BLOCK,
446 CAST_KEY_LENGTH, CAST_BLOCK /* iv_len */,
447 sizeof(CAST_KEY), EVP_CIPH_ECB_MODE | EVP_CIPH_VARIABLE_LENGTH,
448 NULL /* app_data */, cast_init_key,
449 cast_ecb_cipher, NULL /* cleanup */,
450 NULL /* ctrl */,
451 };
452
453 static const EVP_CIPHER cast5_cbc = {
454 NID_cast5_cbc, CAST_BLOCK,
455 CAST_KEY_LENGTH, CAST_BLOCK /* iv_len */,
456 sizeof(CAST_KEY), EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH,
457 NULL /* app_data */, cast_init_key,
458 cast_cbc_cipher, NULL /* cleanup */,
459 NULL /* ctrl */,
460 };
461
EVP_cast5_ecb(void)462 const EVP_CIPHER *EVP_cast5_ecb(void) { return &cast5_ecb; }
463
EVP_cast5_cbc(void)464 const EVP_CIPHER *EVP_cast5_cbc(void) { return &cast5_cbc; }
465