• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]. */
56 
57 #include <openssl/cast.h>
58 #include <openssl/cipher.h>
59 #include <openssl/obj.h>
60 
61 #if defined(OPENSSL_WINDOWS)
62 OPENSSL_MSVC_PRAGMA(warning(push, 3))
63 #include <intrin.h>
OPENSSL_MSVC_PRAGMA(warning (pop))64 OPENSSL_MSVC_PRAGMA(warning(pop))
65 #endif
66 
67 #include "../../crypto/internal.h"
68 #include "internal.h"
69 #include "../macros.h"
70 
71 
72 void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks,
73                       int enc) {
74   uint32_t d[2];
75 
76   n2l(in, d[0]);
77   n2l(in, d[1]);
78   if (enc) {
79     CAST_encrypt(d, ks);
80   } else {
81     CAST_decrypt(d, ks);
82   }
83   l2n(d[0], out);
84   l2n(d[1], out);
85 }
86 
87 #if defined(OPENSSL_WINDOWS) && defined(_MSC_VER)
88 #define ROTL(a, n) (_lrotl(a, n))
89 #else
90 #define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL)
91 #endif
92 
93 #define E_CAST(n, key, L, R, OP1, OP2, OP3)                                   \
94   {                                                                           \
95     uint32_t a, b, c, d;                                                      \
96     t = (key[n * 2] OP1 R) & 0xffffffff;                                      \
97     t = ROTL(t, (key[n * 2 + 1]));                                            \
98     a = CAST_S_table0[(t >> 8) & 0xff];                                       \
99     b = CAST_S_table1[(t)&0xff];                                              \
100     c = CAST_S_table2[(t >> 24) & 0xff];                                      \
101     d = CAST_S_table3[(t >> 16) & 0xff];                                      \
102     L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \
103   }
104 
CAST_encrypt(uint32_t * data,const CAST_KEY * key)105 void CAST_encrypt(uint32_t *data, const CAST_KEY *key) {
106   uint32_t l, r, t;
107   const uint32_t *k;
108 
109   k = &key->data[0];
110   l = data[0];
111   r = data[1];
112 
113   E_CAST(0, k, l, r, +, ^, -);
114   E_CAST(1, k, r, l, ^, -, +);
115   E_CAST(2, k, l, r, -, +, ^);
116   E_CAST(3, k, r, l, +, ^, -);
117   E_CAST(4, k, l, r, ^, -, +);
118   E_CAST(5, k, r, l, -, +, ^);
119   E_CAST(6, k, l, r, +, ^, -);
120   E_CAST(7, k, r, l, ^, -, +);
121   E_CAST(8, k, l, r, -, +, ^);
122   E_CAST(9, k, r, l, +, ^, -);
123   E_CAST(10, k, l, r, ^, -, +);
124   E_CAST(11, k, r, l, -, +, ^);
125 
126   if (!key->short_key) {
127     E_CAST(12, k, l, r, +, ^, -);
128     E_CAST(13, k, r, l, ^, -, +);
129     E_CAST(14, k, l, r, -, +, ^);
130     E_CAST(15, k, r, l, +, ^, -);
131   }
132 
133   data[1] = l & 0xffffffffL;
134   data[0] = r & 0xffffffffL;
135 }
136 
CAST_decrypt(uint32_t * data,const CAST_KEY * key)137 void CAST_decrypt(uint32_t *data, const CAST_KEY *key) {
138   uint32_t l, r, t;
139   const uint32_t *k;
140 
141   k = &key->data[0];
142   l = data[0];
143   r = data[1];
144 
145   if (!key->short_key) {
146     E_CAST(15, k, l, r, +, ^, -);
147     E_CAST(14, k, r, l, -, +, ^);
148     E_CAST(13, k, l, r, ^, -, +);
149     E_CAST(12, k, r, l, +, ^, -);
150   }
151 
152   E_CAST(11, k, l, r, -, +, ^);
153   E_CAST(10, k, r, l, ^, -, +);
154   E_CAST(9, k, l, r, +, ^, -);
155   E_CAST(8, k, r, l, -, +, ^);
156   E_CAST(7, k, l, r, ^, -, +);
157   E_CAST(6, k, r, l, +, ^, -);
158   E_CAST(5, k, l, r, -, +, ^);
159   E_CAST(4, k, r, l, ^, -, +);
160   E_CAST(3, k, l, r, +, ^, -);
161   E_CAST(2, k, r, l, -, +, ^);
162   E_CAST(1, k, l, r, ^, -, +);
163   E_CAST(0, k, r, l, +, ^, -);
164 
165   data[1] = l & 0xffffffffL;
166   data[0] = r & 0xffffffffL;
167 }
168 
CAST_cbc_encrypt(const uint8_t * in,uint8_t * out,size_t length,const CAST_KEY * ks,uint8_t * iv,int enc)169 void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
170                       const CAST_KEY *ks, uint8_t *iv, int enc) {
171   uint32_t tin0, tin1;
172   uint32_t tout0, tout1, xor0, xor1;
173   size_t l = length;
174   uint32_t tin[2];
175 
176   if (enc) {
177     n2l(iv, tout0);
178     n2l(iv, tout1);
179     iv -= 8;
180     while (l >= 8) {
181       n2l(in, tin0);
182       n2l(in, tin1);
183       tin0 ^= tout0;
184       tin1 ^= tout1;
185       tin[0] = tin0;
186       tin[1] = tin1;
187       CAST_encrypt(tin, ks);
188       tout0 = tin[0];
189       tout1 = tin[1];
190       l2n(tout0, out);
191       l2n(tout1, out);
192       l -= 8;
193     }
194     if (l != 0) {
195       n2ln(in, tin0, tin1, l);
196       tin0 ^= tout0;
197       tin1 ^= tout1;
198       tin[0] = tin0;
199       tin[1] = tin1;
200       CAST_encrypt(tin, ks);
201       tout0 = tin[0];
202       tout1 = tin[1];
203       l2n(tout0, out);
204       l2n(tout1, out);
205     }
206     l2n(tout0, iv);
207     l2n(tout1, iv);
208   } else {
209     n2l(iv, xor0);
210     n2l(iv, xor1);
211     iv -= 8;
212     while (l >= 8) {
213       n2l(in, tin0);
214       n2l(in, tin1);
215       tin[0] = tin0;
216       tin[1] = tin1;
217       CAST_decrypt(tin, ks);
218       tout0 = tin[0] ^ xor0;
219       tout1 = tin[1] ^ xor1;
220       l2n(tout0, out);
221       l2n(tout1, out);
222       xor0 = tin0;
223       xor1 = tin1;
224       l -= 8;
225     }
226     if (l != 0) {
227       n2l(in, tin0);
228       n2l(in, tin1);
229       tin[0] = tin0;
230       tin[1] = tin1;
231       CAST_decrypt(tin, ks);
232       tout0 = tin[0] ^ xor0;
233       tout1 = tin[1] ^ xor1;
234       l2nn(tout0, tout1, out, l);
235       xor0 = tin0;
236       xor1 = tin1;
237     }
238     l2n(xor0, iv);
239     l2n(xor1, iv);
240   }
241   tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
242   tin[0] = tin[1] = 0;
243 }
244 
245 #define CAST_exp(l, A, a, n)   \
246   A[n / 4] = l;                \
247   a[n + 3] = (l)&0xff;         \
248   a[n + 2] = (l >> 8) & 0xff;  \
249   a[n + 1] = (l >> 16) & 0xff; \
250   a[n + 0] = (l >> 24) & 0xff;
251 #define S4 CAST_S_table4
252 #define S5 CAST_S_table5
253 #define S6 CAST_S_table6
254 #define S7 CAST_S_table7
255 
CAST_set_key(CAST_KEY * key,size_t len,const uint8_t * data)256 void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) {
257   uint32_t x[16];
258   uint32_t z[16];
259   uint32_t k[32];
260   uint32_t X[4], Z[4];
261   uint32_t l, *K;
262   size_t i;
263 
264   for (i = 0; i < 16; i++) {
265     x[i] = 0;
266   }
267 
268   if (len > 16) {
269     len = 16;
270   }
271 
272   for (i = 0; i < len; i++) {
273     x[i] = data[i];
274   }
275 
276   if (len <= 10) {
277     key->short_key = 1;
278   } else {
279     key->short_key = 0;
280   }
281 
282   K = &k[0];
283   X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL;
284   X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL;
285   X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL;
286   X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL;
287 
288   for (;;) {
289     l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
290     CAST_exp(l, Z, z, 0);
291     l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
292     CAST_exp(l, Z, z, 4);
293     l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
294     CAST_exp(l, Z, z, 8);
295     l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
296     CAST_exp(l, Z, z, 12);
297 
298     K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]];
299     K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]];
300     K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]];
301     K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]];
302 
303     l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
304     CAST_exp(l, X, x, 0);
305     l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
306     CAST_exp(l, X, x, 4);
307     l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
308     CAST_exp(l, X, x, 8);
309     l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
310     CAST_exp(l, X, x, 12);
311 
312     K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]];
313     K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]];
314     K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]];
315     K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]];
316 
317     l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
318     CAST_exp(l, Z, z, 0);
319     l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
320     CAST_exp(l, Z, z, 4);
321     l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
322     CAST_exp(l, Z, z, 8);
323     l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
324     CAST_exp(l, Z, z, 12);
325 
326     K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]];
327     K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]];
328     K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]];
329     K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]];
330 
331     l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
332     CAST_exp(l, X, x, 0);
333     l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
334     CAST_exp(l, X, x, 4);
335     l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
336     CAST_exp(l, X, x, 8);
337     l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
338     CAST_exp(l, X, x, 12);
339 
340     K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]];
341     K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]];
342     K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]];
343     K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]];
344     if (K != k) {
345       break;
346     }
347     K += 16;
348   }
349 
350   for (i = 0; i < 16; i++) {
351     key->data[i * 2] = k[i];
352     key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f;
353   }
354 }
355 
356 // The input and output encrypted as though 64bit cfb mode is being used. The
357 // extra state information to record how much of the 64bit block we have used
358 // is contained in *num.
CAST_cfb64_encrypt(const uint8_t * in,uint8_t * out,size_t length,const CAST_KEY * schedule,uint8_t * ivec,int * num,int enc)359 void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, size_t length,
360                         const CAST_KEY *schedule, uint8_t *ivec, int *num,
361                         int enc) {
362   uint32_t v0, v1, t;
363   int n = *num;
364   size_t l = length;
365   uint32_t ti[2];
366   uint8_t *iv, c, cc;
367 
368   iv = ivec;
369   if (enc) {
370     while (l--) {
371       if (n == 0) {
372         n2l(iv, v0);
373         ti[0] = v0;
374         n2l(iv, v1);
375         ti[1] = v1;
376         CAST_encrypt((uint32_t *)ti, schedule);
377         iv = ivec;
378         t = ti[0];
379         l2n(t, iv);
380         t = ti[1];
381         l2n(t, iv);
382         iv = ivec;
383       }
384       c = *(in++) ^ iv[n];
385       *(out++) = c;
386       iv[n] = c;
387       n = (n + 1) & 0x07;
388     }
389   } else {
390     while (l--) {
391       if (n == 0) {
392         n2l(iv, v0);
393         ti[0] = v0;
394         n2l(iv, v1);
395         ti[1] = v1;
396         CAST_encrypt((uint32_t *)ti, schedule);
397         iv = ivec;
398         t = ti[0];
399         l2n(t, iv);
400         t = ti[1];
401         l2n(t, iv);
402         iv = ivec;
403       }
404       cc = *(in++);
405       c = iv[n];
406       iv[n] = cc;
407       *(out++) = c ^ cc;
408       n = (n + 1) & 0x07;
409     }
410   }
411   v0 = v1 = ti[0] = ti[1] = t = c = cc = 0;
412   *num = n;
413 }
414 
cast_init_key(EVP_CIPHER_CTX * ctx,const uint8_t * key,const uint8_t * iv,int enc)415 static int cast_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
416                          const uint8_t *iv, int enc) {
417   CAST_KEY *cast_key = ctx->cipher_data;
418   CAST_set_key(cast_key, ctx->key_len, key);
419   return 1;
420 }
421 
cast_ecb_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)422 static int cast_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
423                            size_t len) {
424   CAST_KEY *cast_key = ctx->cipher_data;
425 
426   while (len >= CAST_BLOCK) {
427     CAST_ecb_encrypt(in, out, cast_key, ctx->encrypt);
428     in += CAST_BLOCK;
429     out += CAST_BLOCK;
430     len -= CAST_BLOCK;
431   }
432   assert(len == 0);
433 
434   return 1;
435 }
436 
cast_cbc_cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t len)437 static int cast_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
438                            size_t len) {
439   CAST_KEY *cast_key = ctx->cipher_data;
440   CAST_cbc_encrypt(in, out, len, cast_key, ctx->iv, ctx->encrypt);
441   return 1;
442 }
443 
444 static const EVP_CIPHER cast5_ecb = {
445     NID_cast5_ecb,       CAST_BLOCK,
446     CAST_KEY_LENGTH,     CAST_BLOCK /* iv_len */,
447     sizeof(CAST_KEY),    EVP_CIPH_ECB_MODE | EVP_CIPH_VARIABLE_LENGTH,
448     NULL /* app_data */, cast_init_key,
449     cast_ecb_cipher,     NULL /* cleanup */,
450     NULL /* ctrl */,
451 };
452 
453 static const EVP_CIPHER cast5_cbc = {
454     NID_cast5_cbc,       CAST_BLOCK,
455     CAST_KEY_LENGTH,     CAST_BLOCK /* iv_len */,
456     sizeof(CAST_KEY),    EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH,
457     NULL /* app_data */, cast_init_key,
458     cast_cbc_cipher,     NULL /* cleanup */,
459     NULL /* ctrl */,
460 };
461 
EVP_cast5_ecb(void)462 const EVP_CIPHER *EVP_cast5_ecb(void) { return &cast5_ecb; }
463 
EVP_cast5_cbc(void)464 const EVP_CIPHER *EVP_cast5_cbc(void) { return &cast5_cbc; }
465