1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of virtual tables.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Transforms/Utils/Cloning.h"
26 #include <algorithm>
27 #include <cstdio>
28
29 using namespace clang;
30 using namespace CodeGen;
31
CodeGenVTables(CodeGenModule & CGM)32 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
33 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
34
GetAddrOfThunk(GlobalDecl GD,const ThunkInfo & Thunk)35 llvm::Constant *CodeGenModule::GetAddrOfThunk(GlobalDecl GD,
36 const ThunkInfo &Thunk) {
37 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
38
39 // Compute the mangled name.
40 SmallString<256> Name;
41 llvm::raw_svector_ostream Out(Name);
42 if (const CXXDestructorDecl* DD = dyn_cast<CXXDestructorDecl>(MD))
43 getCXXABI().getMangleContext().mangleCXXDtorThunk(DD, GD.getDtorType(),
44 Thunk.This, Out);
45 else
46 getCXXABI().getMangleContext().mangleThunk(MD, Thunk, Out);
47
48 llvm::Type *Ty = getTypes().GetFunctionTypeForVTable(GD);
49 return GetOrCreateLLVMFunction(Name, Ty, GD, /*ForVTable=*/true,
50 /*DontDefer=*/true, /*IsThunk=*/true);
51 }
52
setThunkVisibility(CodeGenModule & CGM,const CXXMethodDecl * MD,const ThunkInfo & Thunk,llvm::Function * Fn)53 static void setThunkVisibility(CodeGenModule &CGM, const CXXMethodDecl *MD,
54 const ThunkInfo &Thunk, llvm::Function *Fn) {
55 CGM.setGlobalVisibility(Fn, MD);
56 }
57
setThunkProperties(CodeGenModule & CGM,const ThunkInfo & Thunk,llvm::Function * ThunkFn,bool ForVTable,GlobalDecl GD)58 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
59 llvm::Function *ThunkFn, bool ForVTable,
60 GlobalDecl GD) {
61 CGM.setFunctionLinkage(GD, ThunkFn);
62 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
63 !Thunk.Return.isEmpty());
64
65 // Set the right visibility.
66 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
67 setThunkVisibility(CGM, MD, Thunk, ThunkFn);
68
69 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
70 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
71 }
72
73 #ifndef NDEBUG
similar(const ABIArgInfo & infoL,CanQualType typeL,const ABIArgInfo & infoR,CanQualType typeR)74 static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
75 const ABIArgInfo &infoR, CanQualType typeR) {
76 return (infoL.getKind() == infoR.getKind() &&
77 (typeL == typeR ||
78 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
79 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
80 }
81 #endif
82
PerformReturnAdjustment(CodeGenFunction & CGF,QualType ResultType,RValue RV,const ThunkInfo & Thunk)83 static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
84 QualType ResultType, RValue RV,
85 const ThunkInfo &Thunk) {
86 // Emit the return adjustment.
87 bool NullCheckValue = !ResultType->isReferenceType();
88
89 llvm::BasicBlock *AdjustNull = nullptr;
90 llvm::BasicBlock *AdjustNotNull = nullptr;
91 llvm::BasicBlock *AdjustEnd = nullptr;
92
93 llvm::Value *ReturnValue = RV.getScalarVal();
94
95 if (NullCheckValue) {
96 AdjustNull = CGF.createBasicBlock("adjust.null");
97 AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
98 AdjustEnd = CGF.createBasicBlock("adjust.end");
99
100 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
101 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
102 CGF.EmitBlock(AdjustNotNull);
103 }
104
105 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
106 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
107 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
108 Address(ReturnValue, ClassAlign),
109 Thunk.Return);
110
111 if (NullCheckValue) {
112 CGF.Builder.CreateBr(AdjustEnd);
113 CGF.EmitBlock(AdjustNull);
114 CGF.Builder.CreateBr(AdjustEnd);
115 CGF.EmitBlock(AdjustEnd);
116
117 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
118 PHI->addIncoming(ReturnValue, AdjustNotNull);
119 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
120 AdjustNull);
121 ReturnValue = PHI;
122 }
123
124 return RValue::get(ReturnValue);
125 }
126
127 // This function does roughly the same thing as GenerateThunk, but in a
128 // very different way, so that va_start and va_end work correctly.
129 // FIXME: This function assumes "this" is the first non-sret LLVM argument of
130 // a function, and that there is an alloca built in the entry block
131 // for all accesses to "this".
132 // FIXME: This function assumes there is only one "ret" statement per function.
133 // FIXME: Cloning isn't correct in the presence of indirect goto!
134 // FIXME: This implementation of thunks bloats codesize by duplicating the
135 // function definition. There are alternatives:
136 // 1. Add some sort of stub support to LLVM for cases where we can
137 // do a this adjustment, then a sibcall.
138 // 2. We could transform the definition to take a va_list instead of an
139 // actual variable argument list, then have the thunks (including a
140 // no-op thunk for the regular definition) call va_start/va_end.
141 // There's a bit of per-call overhead for this solution, but it's
142 // better for codesize if the definition is long.
143 llvm::Function *
GenerateVarArgsThunk(llvm::Function * Fn,const CGFunctionInfo & FnInfo,GlobalDecl GD,const ThunkInfo & Thunk)144 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
145 const CGFunctionInfo &FnInfo,
146 GlobalDecl GD, const ThunkInfo &Thunk) {
147 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
148 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
149 QualType ResultType = FPT->getReturnType();
150
151 // Get the original function
152 assert(FnInfo.isVariadic());
153 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
154 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
155 llvm::Function *BaseFn = cast<llvm::Function>(Callee);
156
157 // Clone to thunk.
158 llvm::ValueToValueMapTy VMap;
159 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
160 Fn->replaceAllUsesWith(NewFn);
161 NewFn->takeName(Fn);
162 Fn->eraseFromParent();
163 Fn = NewFn;
164
165 // "Initialize" CGF (minimally).
166 CurFn = Fn;
167
168 // Get the "this" value
169 llvm::Function::arg_iterator AI = Fn->arg_begin();
170 if (CGM.ReturnTypeUsesSRet(FnInfo))
171 ++AI;
172
173 // Find the first store of "this", which will be to the alloca associated
174 // with "this".
175 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
176 llvm::BasicBlock *EntryBB = &Fn->front();
177 llvm::BasicBlock::iterator ThisStore =
178 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
179 return isa<llvm::StoreInst>(I) &&
180 I.getOperand(0) == ThisPtr.getPointer();
181 });
182 assert(ThisStore != EntryBB->end() &&
183 "Store of this should be in entry block?");
184 // Adjust "this", if necessary.
185 Builder.SetInsertPoint(&*ThisStore);
186 llvm::Value *AdjustedThisPtr =
187 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
188 ThisStore->setOperand(0, AdjustedThisPtr);
189
190 if (!Thunk.Return.isEmpty()) {
191 // Fix up the returned value, if necessary.
192 for (llvm::BasicBlock &BB : *Fn) {
193 llvm::Instruction *T = BB.getTerminator();
194 if (isa<llvm::ReturnInst>(T)) {
195 RValue RV = RValue::get(T->getOperand(0));
196 T->eraseFromParent();
197 Builder.SetInsertPoint(&BB);
198 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
199 Builder.CreateRet(RV.getScalarVal());
200 break;
201 }
202 }
203 }
204
205 return Fn;
206 }
207
StartThunk(llvm::Function * Fn,GlobalDecl GD,const CGFunctionInfo & FnInfo)208 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
209 const CGFunctionInfo &FnInfo) {
210 assert(!CurGD.getDecl() && "CurGD was already set!");
211 CurGD = GD;
212 CurFuncIsThunk = true;
213
214 // Build FunctionArgs.
215 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
216 QualType ThisType = MD->getThisType(getContext());
217 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
218 QualType ResultType = CGM.getCXXABI().HasThisReturn(GD)
219 ? ThisType
220 : CGM.getCXXABI().hasMostDerivedReturn(GD)
221 ? CGM.getContext().VoidPtrTy
222 : FPT->getReturnType();
223 FunctionArgList FunctionArgs;
224
225 // Create the implicit 'this' parameter declaration.
226 CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
227
228 // Add the rest of the parameters.
229 FunctionArgs.append(MD->param_begin(), MD->param_end());
230
231 if (isa<CXXDestructorDecl>(MD))
232 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, FunctionArgs);
233
234 // Start defining the function.
235 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
236 MD->getLocation(), MD->getLocation());
237
238 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
239 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
240 CXXThisValue = CXXABIThisValue;
241 CurCodeDecl = MD;
242 CurFuncDecl = MD;
243 }
244
FinishThunk()245 void CodeGenFunction::FinishThunk() {
246 // Clear these to restore the invariants expected by
247 // StartFunction/FinishFunction.
248 CurCodeDecl = nullptr;
249 CurFuncDecl = nullptr;
250
251 FinishFunction();
252 }
253
EmitCallAndReturnForThunk(llvm::Value * Callee,const ThunkInfo * Thunk)254 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Value *Callee,
255 const ThunkInfo *Thunk) {
256 assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
257 "Please use a new CGF for this thunk");
258 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
259
260 // Adjust the 'this' pointer if necessary
261 llvm::Value *AdjustedThisPtr =
262 Thunk ? CGM.getCXXABI().performThisAdjustment(
263 *this, LoadCXXThisAddress(), Thunk->This)
264 : LoadCXXThis();
265
266 if (CurFnInfo->usesInAlloca()) {
267 // We don't handle return adjusting thunks, because they require us to call
268 // the copy constructor. For now, fall through and pretend the return
269 // adjustment was empty so we don't crash.
270 if (Thunk && !Thunk->Return.isEmpty()) {
271 CGM.ErrorUnsupported(
272 MD, "non-trivial argument copy for return-adjusting thunk");
273 }
274 EmitMustTailThunk(MD, AdjustedThisPtr, Callee);
275 return;
276 }
277
278 // Start building CallArgs.
279 CallArgList CallArgs;
280 QualType ThisType = MD->getThisType(getContext());
281 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
282
283 if (isa<CXXDestructorDecl>(MD))
284 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
285
286 // Add the rest of the arguments.
287 for (const ParmVarDecl *PD : MD->parameters())
288 EmitDelegateCallArg(CallArgs, PD, PD->getLocStart());
289
290 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
291
292 #ifndef NDEBUG
293 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
294 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1, MD));
295 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
296 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
297 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
298 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
299 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
300 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
301 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
302 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
303 assert(similar(CallFnInfo.arg_begin()[i].info,
304 CallFnInfo.arg_begin()[i].type,
305 CurFnInfo->arg_begin()[i].info,
306 CurFnInfo->arg_begin()[i].type));
307 #endif
308
309 // Determine whether we have a return value slot to use.
310 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
311 ? ThisType
312 : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
313 ? CGM.getContext().VoidPtrTy
314 : FPT->getReturnType();
315 ReturnValueSlot Slot;
316 if (!ResultType->isVoidType() &&
317 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
318 !hasScalarEvaluationKind(CurFnInfo->getReturnType()))
319 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
320
321 // Now emit our call.
322 llvm::Instruction *CallOrInvoke;
323 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, MD, &CallOrInvoke);
324
325 // Consider return adjustment if we have ThunkInfo.
326 if (Thunk && !Thunk->Return.isEmpty())
327 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
328 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
329 Call->setTailCallKind(llvm::CallInst::TCK_Tail);
330
331 // Emit return.
332 if (!ResultType->isVoidType() && Slot.isNull())
333 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
334
335 // Disable the final ARC autorelease.
336 AutoreleaseResult = false;
337
338 FinishThunk();
339 }
340
EmitMustTailThunk(const CXXMethodDecl * MD,llvm::Value * AdjustedThisPtr,llvm::Value * Callee)341 void CodeGenFunction::EmitMustTailThunk(const CXXMethodDecl *MD,
342 llvm::Value *AdjustedThisPtr,
343 llvm::Value *Callee) {
344 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
345 // to translate AST arguments into LLVM IR arguments. For thunks, we know
346 // that the caller prototype more or less matches the callee prototype with
347 // the exception of 'this'.
348 SmallVector<llvm::Value *, 8> Args;
349 for (llvm::Argument &A : CurFn->args())
350 Args.push_back(&A);
351
352 // Set the adjusted 'this' pointer.
353 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
354 if (ThisAI.isDirect()) {
355 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
356 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
357 llvm::Type *ThisType = Args[ThisArgNo]->getType();
358 if (ThisType != AdjustedThisPtr->getType())
359 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
360 Args[ThisArgNo] = AdjustedThisPtr;
361 } else {
362 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
363 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
364 llvm::Type *ThisType = ThisAddr.getElementType();
365 if (ThisType != AdjustedThisPtr->getType())
366 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
367 Builder.CreateStore(AdjustedThisPtr, ThisAddr);
368 }
369
370 // Emit the musttail call manually. Even if the prologue pushed cleanups, we
371 // don't actually want to run them.
372 llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
373 Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
374
375 // Apply the standard set of call attributes.
376 unsigned CallingConv;
377 CodeGen::AttributeListType AttributeList;
378 CGM.ConstructAttributeList(Callee->getName(), *CurFnInfo, MD, AttributeList,
379 CallingConv, /*AttrOnCallSite=*/true);
380 llvm::AttributeSet Attrs =
381 llvm::AttributeSet::get(getLLVMContext(), AttributeList);
382 Call->setAttributes(Attrs);
383 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
384
385 if (Call->getType()->isVoidTy())
386 Builder.CreateRetVoid();
387 else
388 Builder.CreateRet(Call);
389
390 // Finish the function to maintain CodeGenFunction invariants.
391 // FIXME: Don't emit unreachable code.
392 EmitBlock(createBasicBlock());
393 FinishFunction();
394 }
395
generateThunk(llvm::Function * Fn,const CGFunctionInfo & FnInfo,GlobalDecl GD,const ThunkInfo & Thunk)396 void CodeGenFunction::generateThunk(llvm::Function *Fn,
397 const CGFunctionInfo &FnInfo,
398 GlobalDecl GD, const ThunkInfo &Thunk) {
399 StartThunk(Fn, GD, FnInfo);
400
401 // Get our callee.
402 llvm::Type *Ty =
403 CGM.getTypes().GetFunctionType(CGM.getTypes().arrangeGlobalDeclaration(GD));
404 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
405
406 // Make the call and return the result.
407 EmitCallAndReturnForThunk(Callee, &Thunk);
408 }
409
emitThunk(GlobalDecl GD,const ThunkInfo & Thunk,bool ForVTable)410 void CodeGenVTables::emitThunk(GlobalDecl GD, const ThunkInfo &Thunk,
411 bool ForVTable) {
412 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(GD);
413
414 // FIXME: re-use FnInfo in this computation.
415 llvm::Constant *C = CGM.GetAddrOfThunk(GD, Thunk);
416 llvm::GlobalValue *Entry;
417
418 // Strip off a bitcast if we got one back.
419 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) {
420 assert(CE->getOpcode() == llvm::Instruction::BitCast);
421 Entry = cast<llvm::GlobalValue>(CE->getOperand(0));
422 } else {
423 Entry = cast<llvm::GlobalValue>(C);
424 }
425
426 // There's already a declaration with the same name, check if it has the same
427 // type or if we need to replace it.
428 if (Entry->getType()->getElementType() !=
429 CGM.getTypes().GetFunctionTypeForVTable(GD)) {
430 llvm::GlobalValue *OldThunkFn = Entry;
431
432 // If the types mismatch then we have to rewrite the definition.
433 assert(OldThunkFn->isDeclaration() &&
434 "Shouldn't replace non-declaration");
435
436 // Remove the name from the old thunk function and get a new thunk.
437 OldThunkFn->setName(StringRef());
438 Entry = cast<llvm::GlobalValue>(CGM.GetAddrOfThunk(GD, Thunk));
439
440 // If needed, replace the old thunk with a bitcast.
441 if (!OldThunkFn->use_empty()) {
442 llvm::Constant *NewPtrForOldDecl =
443 llvm::ConstantExpr::getBitCast(Entry, OldThunkFn->getType());
444 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
445 }
446
447 // Remove the old thunk.
448 OldThunkFn->eraseFromParent();
449 }
450
451 llvm::Function *ThunkFn = cast<llvm::Function>(Entry);
452 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
453 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
454
455 if (!ThunkFn->isDeclaration()) {
456 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
457 // There is already a thunk emitted for this function, do nothing.
458 return;
459 }
460
461 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD);
462 return;
463 }
464
465 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
466
467 if (ThunkFn->isVarArg()) {
468 // Varargs thunks are special; we can't just generate a call because
469 // we can't copy the varargs. Our implementation is rather
470 // expensive/sucky at the moment, so don't generate the thunk unless
471 // we have to.
472 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
473 if (UseAvailableExternallyLinkage)
474 return;
475 ThunkFn =
476 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, Thunk);
477 } else {
478 // Normal thunk body generation.
479 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, Thunk);
480 }
481
482 setThunkProperties(CGM, Thunk, ThunkFn, ForVTable, GD);
483 }
484
maybeEmitThunkForVTable(GlobalDecl GD,const ThunkInfo & Thunk)485 void CodeGenVTables::maybeEmitThunkForVTable(GlobalDecl GD,
486 const ThunkInfo &Thunk) {
487 // If the ABI has key functions, only the TU with the key function should emit
488 // the thunk. However, we can allow inlining of thunks if we emit them with
489 // available_externally linkage together with vtables when optimizations are
490 // enabled.
491 if (CGM.getTarget().getCXXABI().hasKeyFunctions() &&
492 !CGM.getCodeGenOpts().OptimizationLevel)
493 return;
494
495 // We can't emit thunks for member functions with incomplete types.
496 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
497 if (!CGM.getTypes().isFuncTypeConvertible(
498 MD->getType()->castAs<FunctionType>()))
499 return;
500
501 emitThunk(GD, Thunk, /*ForVTable=*/true);
502 }
503
EmitThunks(GlobalDecl GD)504 void CodeGenVTables::EmitThunks(GlobalDecl GD)
505 {
506 const CXXMethodDecl *MD =
507 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
508
509 // We don't need to generate thunks for the base destructor.
510 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
511 return;
512
513 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
514 VTContext->getThunkInfo(GD);
515
516 if (!ThunkInfoVector)
517 return;
518
519 for (const ThunkInfo& Thunk : *ThunkInfoVector)
520 emitThunk(GD, Thunk, /*ForVTable=*/false);
521 }
522
CreateVTableInitializer(const CXXRecordDecl * RD,const VTableComponent * Components,unsigned NumComponents,const VTableLayout::VTableThunkTy * VTableThunks,unsigned NumVTableThunks,llvm::Constant * RTTI)523 llvm::Constant *CodeGenVTables::CreateVTableInitializer(
524 const CXXRecordDecl *RD, const VTableComponent *Components,
525 unsigned NumComponents, const VTableLayout::VTableThunkTy *VTableThunks,
526 unsigned NumVTableThunks, llvm::Constant *RTTI) {
527 SmallVector<llvm::Constant *, 64> Inits;
528
529 llvm::Type *Int8PtrTy = CGM.Int8PtrTy;
530
531 llvm::Type *PtrDiffTy =
532 CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
533
534 unsigned NextVTableThunkIndex = 0;
535
536 llvm::Constant *PureVirtualFn = nullptr, *DeletedVirtualFn = nullptr;
537
538 for (unsigned I = 0; I != NumComponents; ++I) {
539 VTableComponent Component = Components[I];
540
541 llvm::Constant *Init = nullptr;
542
543 switch (Component.getKind()) {
544 case VTableComponent::CK_VCallOffset:
545 Init = llvm::ConstantInt::get(PtrDiffTy,
546 Component.getVCallOffset().getQuantity());
547 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
548 break;
549 case VTableComponent::CK_VBaseOffset:
550 Init = llvm::ConstantInt::get(PtrDiffTy,
551 Component.getVBaseOffset().getQuantity());
552 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
553 break;
554 case VTableComponent::CK_OffsetToTop:
555 Init = llvm::ConstantInt::get(PtrDiffTy,
556 Component.getOffsetToTop().getQuantity());
557 Init = llvm::ConstantExpr::getIntToPtr(Init, Int8PtrTy);
558 break;
559 case VTableComponent::CK_RTTI:
560 Init = llvm::ConstantExpr::getBitCast(RTTI, Int8PtrTy);
561 break;
562 case VTableComponent::CK_FunctionPointer:
563 case VTableComponent::CK_CompleteDtorPointer:
564 case VTableComponent::CK_DeletingDtorPointer: {
565 GlobalDecl GD;
566
567 // Get the right global decl.
568 switch (Component.getKind()) {
569 default:
570 llvm_unreachable("Unexpected vtable component kind");
571 case VTableComponent::CK_FunctionPointer:
572 GD = Component.getFunctionDecl();
573 break;
574 case VTableComponent::CK_CompleteDtorPointer:
575 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Complete);
576 break;
577 case VTableComponent::CK_DeletingDtorPointer:
578 GD = GlobalDecl(Component.getDestructorDecl(), Dtor_Deleting);
579 break;
580 }
581
582 if (CGM.getLangOpts().CUDA) {
583 // Emit NULL for methods we can't codegen on this
584 // side. Otherwise we'd end up with vtable with unresolved
585 // references.
586 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
587 // OK on device side: functions w/ __device__ attribute
588 // OK on host side: anything except __device__-only functions.
589 bool CanEmitMethod = CGM.getLangOpts().CUDAIsDevice
590 ? MD->hasAttr<CUDADeviceAttr>()
591 : (MD->hasAttr<CUDAHostAttr>() ||
592 !MD->hasAttr<CUDADeviceAttr>());
593 if (!CanEmitMethod) {
594 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
595 break;
596 }
597 // Method is acceptable, continue processing as usual.
598 }
599
600 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
601 // We have a pure virtual member function.
602 if (!PureVirtualFn) {
603 llvm::FunctionType *Ty =
604 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
605 StringRef PureCallName = CGM.getCXXABI().GetPureVirtualCallName();
606 PureVirtualFn = CGM.CreateRuntimeFunction(Ty, PureCallName);
607 if (auto *F = dyn_cast<llvm::Function>(PureVirtualFn))
608 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
609 PureVirtualFn = llvm::ConstantExpr::getBitCast(PureVirtualFn,
610 CGM.Int8PtrTy);
611 }
612 Init = PureVirtualFn;
613 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
614 if (!DeletedVirtualFn) {
615 llvm::FunctionType *Ty =
616 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
617 StringRef DeletedCallName =
618 CGM.getCXXABI().GetDeletedVirtualCallName();
619 DeletedVirtualFn = CGM.CreateRuntimeFunction(Ty, DeletedCallName);
620 if (auto *F = dyn_cast<llvm::Function>(DeletedVirtualFn))
621 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
622 DeletedVirtualFn = llvm::ConstantExpr::getBitCast(DeletedVirtualFn,
623 CGM.Int8PtrTy);
624 }
625 Init = DeletedVirtualFn;
626 } else {
627 // Check if we should use a thunk.
628 if (NextVTableThunkIndex < NumVTableThunks &&
629 VTableThunks[NextVTableThunkIndex].first == I) {
630 const ThunkInfo &Thunk = VTableThunks[NextVTableThunkIndex].second;
631
632 maybeEmitThunkForVTable(GD, Thunk);
633 Init = CGM.GetAddrOfThunk(GD, Thunk);
634
635 NextVTableThunkIndex++;
636 } else {
637 llvm::Type *Ty = CGM.getTypes().GetFunctionTypeForVTable(GD);
638
639 Init = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
640 }
641
642 Init = llvm::ConstantExpr::getBitCast(Init, Int8PtrTy);
643 }
644 break;
645 }
646
647 case VTableComponent::CK_UnusedFunctionPointer:
648 Init = llvm::ConstantExpr::getNullValue(Int8PtrTy);
649 break;
650 };
651
652 Inits.push_back(Init);
653 }
654
655 llvm::ArrayType *ArrayType = llvm::ArrayType::get(Int8PtrTy, NumComponents);
656 return llvm::ConstantArray::get(ArrayType, Inits);
657 }
658
659 llvm::GlobalVariable *
GenerateConstructionVTable(const CXXRecordDecl * RD,const BaseSubobject & Base,bool BaseIsVirtual,llvm::GlobalVariable::LinkageTypes Linkage,VTableAddressPointsMapTy & AddressPoints)660 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
661 const BaseSubobject &Base,
662 bool BaseIsVirtual,
663 llvm::GlobalVariable::LinkageTypes Linkage,
664 VTableAddressPointsMapTy& AddressPoints) {
665 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
666 DI->completeClassData(Base.getBase());
667
668 std::unique_ptr<VTableLayout> VTLayout(
669 getItaniumVTableContext().createConstructionVTableLayout(
670 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
671
672 // Add the address points.
673 AddressPoints = VTLayout->getAddressPoints();
674
675 // Get the mangled construction vtable name.
676 SmallString<256> OutName;
677 llvm::raw_svector_ostream Out(OutName);
678 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
679 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
680 Base.getBase(), Out);
681 StringRef Name = OutName.str();
682
683 llvm::ArrayType *ArrayType =
684 llvm::ArrayType::get(CGM.Int8PtrTy, VTLayout->getNumVTableComponents());
685
686 // Construction vtable symbols are not part of the Itanium ABI, so we cannot
687 // guarantee that they actually will be available externally. Instead, when
688 // emitting an available_externally VTT, we provide references to an internal
689 // linkage construction vtable. The ABI only requires complete-object vtables
690 // to be the same for all instances of a type, not construction vtables.
691 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
692 Linkage = llvm::GlobalVariable::InternalLinkage;
693
694 // Create the variable that will hold the construction vtable.
695 llvm::GlobalVariable *VTable =
696 CGM.CreateOrReplaceCXXRuntimeVariable(Name, ArrayType, Linkage);
697 CGM.setGlobalVisibility(VTable, RD);
698
699 // V-tables are always unnamed_addr.
700 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
701
702 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
703 CGM.getContext().getTagDeclType(Base.getBase()));
704
705 // Create and set the initializer.
706 llvm::Constant *Init = CreateVTableInitializer(
707 Base.getBase(), VTLayout->vtable_component_begin(),
708 VTLayout->getNumVTableComponents(), VTLayout->vtable_thunk_begin(),
709 VTLayout->getNumVTableThunks(), RTTI);
710 VTable->setInitializer(Init);
711
712 CGM.EmitVTableTypeMetadata(VTable, *VTLayout.get());
713
714 return VTable;
715 }
716
shouldEmitAvailableExternallyVTable(const CodeGenModule & CGM,const CXXRecordDecl * RD)717 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
718 const CXXRecordDecl *RD) {
719 return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
720 CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
721 }
722
723 /// Compute the required linkage of the vtable for the given class.
724 ///
725 /// Note that we only call this at the end of the translation unit.
726 llvm::GlobalVariable::LinkageTypes
getVTableLinkage(const CXXRecordDecl * RD)727 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
728 if (!RD->isExternallyVisible())
729 return llvm::GlobalVariable::InternalLinkage;
730
731 // We're at the end of the translation unit, so the current key
732 // function is fully correct.
733 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
734 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
735 // If this class has a key function, use that to determine the
736 // linkage of the vtable.
737 const FunctionDecl *def = nullptr;
738 if (keyFunction->hasBody(def))
739 keyFunction = cast<CXXMethodDecl>(def);
740
741 switch (keyFunction->getTemplateSpecializationKind()) {
742 case TSK_Undeclared:
743 case TSK_ExplicitSpecialization:
744 assert((def || CodeGenOpts.OptimizationLevel > 0) &&
745 "Shouldn't query vtable linkage without key function or "
746 "optimizations");
747 if (!def && CodeGenOpts.OptimizationLevel > 0)
748 return llvm::GlobalVariable::AvailableExternallyLinkage;
749
750 if (keyFunction->isInlined())
751 return !Context.getLangOpts().AppleKext ?
752 llvm::GlobalVariable::LinkOnceODRLinkage :
753 llvm::Function::InternalLinkage;
754
755 return llvm::GlobalVariable::ExternalLinkage;
756
757 case TSK_ImplicitInstantiation:
758 return !Context.getLangOpts().AppleKext ?
759 llvm::GlobalVariable::LinkOnceODRLinkage :
760 llvm::Function::InternalLinkage;
761
762 case TSK_ExplicitInstantiationDefinition:
763 return !Context.getLangOpts().AppleKext ?
764 llvm::GlobalVariable::WeakODRLinkage :
765 llvm::Function::InternalLinkage;
766
767 case TSK_ExplicitInstantiationDeclaration:
768 llvm_unreachable("Should not have been asked to emit this");
769 }
770 }
771
772 // -fapple-kext mode does not support weak linkage, so we must use
773 // internal linkage.
774 if (Context.getLangOpts().AppleKext)
775 return llvm::Function::InternalLinkage;
776
777 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
778 llvm::GlobalValue::LinkOnceODRLinkage;
779 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
780 llvm::GlobalValue::WeakODRLinkage;
781 if (RD->hasAttr<DLLExportAttr>()) {
782 // Cannot discard exported vtables.
783 DiscardableODRLinkage = NonDiscardableODRLinkage;
784 } else if (RD->hasAttr<DLLImportAttr>()) {
785 // Imported vtables are available externally.
786 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
787 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
788 }
789
790 switch (RD->getTemplateSpecializationKind()) {
791 case TSK_Undeclared:
792 case TSK_ExplicitSpecialization:
793 case TSK_ImplicitInstantiation:
794 return DiscardableODRLinkage;
795
796 case TSK_ExplicitInstantiationDeclaration:
797 // Explicit instantiations in MSVC do not provide vtables, so we must emit
798 // our own.
799 if (getTarget().getCXXABI().isMicrosoft())
800 return DiscardableODRLinkage;
801 return shouldEmitAvailableExternallyVTable(*this, RD)
802 ? llvm::GlobalVariable::AvailableExternallyLinkage
803 : llvm::GlobalVariable::ExternalLinkage;
804
805 case TSK_ExplicitInstantiationDefinition:
806 return NonDiscardableODRLinkage;
807 }
808
809 llvm_unreachable("Invalid TemplateSpecializationKind!");
810 }
811
812 /// This is a callback from Sema to tell us that that a particular vtable is
813 /// required to be emitted in this translation unit.
814 ///
815 /// This is only called for vtables that _must_ be emitted (mainly due to key
816 /// functions). For weak vtables, CodeGen tracks when they are needed and
817 /// emits them as-needed.
EmitVTable(CXXRecordDecl * theClass)818 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
819 VTables.GenerateClassData(theClass);
820 }
821
822 void
GenerateClassData(const CXXRecordDecl * RD)823 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
824 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
825 DI->completeClassData(RD);
826
827 if (RD->getNumVBases())
828 CGM.getCXXABI().emitVirtualInheritanceTables(RD);
829
830 CGM.getCXXABI().emitVTableDefinitions(*this, RD);
831 }
832
833 /// At this point in the translation unit, does it appear that can we
834 /// rely on the vtable being defined elsewhere in the program?
835 ///
836 /// The response is really only definitive when called at the end of
837 /// the translation unit.
838 ///
839 /// The only semantic restriction here is that the object file should
840 /// not contain a vtable definition when that vtable is defined
841 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting
842 /// vtables when unnecessary.
isVTableExternal(const CXXRecordDecl * RD)843 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
844 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
845
846 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
847 // emit them even if there is an explicit template instantiation.
848 if (CGM.getTarget().getCXXABI().isMicrosoft())
849 return false;
850
851 // If we have an explicit instantiation declaration (and not a
852 // definition), the vtable is defined elsewhere.
853 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
854 if (TSK == TSK_ExplicitInstantiationDeclaration)
855 return true;
856
857 // Otherwise, if the class is an instantiated template, the
858 // vtable must be defined here.
859 if (TSK == TSK_ImplicitInstantiation ||
860 TSK == TSK_ExplicitInstantiationDefinition)
861 return false;
862
863 // Otherwise, if the class doesn't have a key function (possibly
864 // anymore), the vtable must be defined here.
865 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
866 if (!keyFunction)
867 return false;
868
869 // Otherwise, if we don't have a definition of the key function, the
870 // vtable must be defined somewhere else.
871 return !keyFunction->hasBody();
872 }
873
874 /// Given that we're currently at the end of the translation unit, and
875 /// we've emitted a reference to the vtable for this class, should
876 /// we define that vtable?
shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule & CGM,const CXXRecordDecl * RD)877 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
878 const CXXRecordDecl *RD) {
879 // If vtable is internal then it has to be done.
880 if (!CGM.getVTables().isVTableExternal(RD))
881 return true;
882
883 // If it's external then maybe we will need it as available_externally.
884 return shouldEmitAvailableExternallyVTable(CGM, RD);
885 }
886
887 /// Given that at some point we emitted a reference to one or more
888 /// vtables, and that we are now at the end of the translation unit,
889 /// decide whether we should emit them.
EmitDeferredVTables()890 void CodeGenModule::EmitDeferredVTables() {
891 #ifndef NDEBUG
892 // Remember the size of DeferredVTables, because we're going to assume
893 // that this entire operation doesn't modify it.
894 size_t savedSize = DeferredVTables.size();
895 #endif
896
897 for (const CXXRecordDecl *RD : DeferredVTables)
898 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
899 VTables.GenerateClassData(RD);
900
901 assert(savedSize == DeferredVTables.size() &&
902 "deferred extra vtables during vtable emission?");
903 DeferredVTables.clear();
904 }
905
HasHiddenLTOVisibility(const CXXRecordDecl * RD)906 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
907 LinkageInfo LV = RD->getLinkageAndVisibility();
908 if (!isExternallyVisible(LV.getLinkage()))
909 return true;
910
911 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
912 return false;
913
914 if (getTriple().isOSBinFormatCOFF()) {
915 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
916 return false;
917 } else {
918 if (LV.getVisibility() != HiddenVisibility)
919 return false;
920 }
921
922 if (getCodeGenOpts().LTOVisibilityPublicStd) {
923 const DeclContext *DC = RD;
924 while (1) {
925 auto *D = cast<Decl>(DC);
926 DC = DC->getParent();
927 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
928 if (auto *ND = dyn_cast<NamespaceDecl>(D))
929 if (const IdentifierInfo *II = ND->getIdentifier())
930 if (II->isStr("std") || II->isStr("stdext"))
931 return false;
932 break;
933 }
934 }
935 }
936
937 return true;
938 }
939
EmitVTableTypeMetadata(llvm::GlobalVariable * VTable,const VTableLayout & VTLayout)940 void CodeGenModule::EmitVTableTypeMetadata(llvm::GlobalVariable *VTable,
941 const VTableLayout &VTLayout) {
942 if (!getCodeGenOpts().PrepareForLTO)
943 return;
944
945 CharUnits PointerWidth =
946 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
947
948 typedef std::pair<const CXXRecordDecl *, unsigned> BSEntry;
949 std::vector<BSEntry> BitsetEntries;
950 // Create a bit set entry for each address point.
951 for (auto &&AP : VTLayout.getAddressPoints())
952 BitsetEntries.push_back(std::make_pair(AP.first.getBase(), AP.second));
953
954 // Sort the bit set entries for determinism.
955 std::sort(BitsetEntries.begin(), BitsetEntries.end(),
956 [this](const BSEntry &E1, const BSEntry &E2) {
957 if (&E1 == &E2)
958 return false;
959
960 std::string S1;
961 llvm::raw_string_ostream O1(S1);
962 getCXXABI().getMangleContext().mangleTypeName(
963 QualType(E1.first->getTypeForDecl(), 0), O1);
964 O1.flush();
965
966 std::string S2;
967 llvm::raw_string_ostream O2(S2);
968 getCXXABI().getMangleContext().mangleTypeName(
969 QualType(E2.first->getTypeForDecl(), 0), O2);
970 O2.flush();
971
972 if (S1 < S2)
973 return true;
974 if (S1 != S2)
975 return false;
976
977 return E1.second < E2.second;
978 });
979
980 for (auto BitsetEntry : BitsetEntries)
981 AddVTableTypeMetadata(VTable, PointerWidth * BitsetEntry.second,
982 BitsetEntry.first);
983 }
984