1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Provides the Expression parsing implementation.
12 ///
13 /// Expressions in C99 basically consist of a bunch of binary operators with
14 /// unary operators and other random stuff at the leaves.
15 ///
16 /// In the C99 grammar, these unary operators bind tightest and are represented
17 /// as the 'cast-expression' production. Everything else is either a binary
18 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
19 /// handled by ParseCastExpression, the higher level pieces are handled by
20 /// ParseBinaryExpression.
21 ///
22 //===----------------------------------------------------------------------===//
23
24 #include "clang/Parse/Parser.h"
25 #include "RAIIObjectsForParser.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/Basic/PrettyStackTrace.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/SmallVector.h"
34 using namespace clang;
35
36 /// \brief Simple precedence-based parser for binary/ternary operators.
37 ///
38 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
39 /// production. C99 specifies that the LHS of an assignment operator should be
40 /// parsed as a unary-expression, but consistency dictates that it be a
41 /// conditional-expession. In practice, the important thing here is that the
42 /// LHS of an assignment has to be an l-value, which productions between
43 /// unary-expression and conditional-expression don't produce. Because we want
44 /// consistency, we parse the LHS as a conditional-expression, then check for
45 /// l-value-ness in semantic analysis stages.
46 ///
47 /// \verbatim
48 /// pm-expression: [C++ 5.5]
49 /// cast-expression
50 /// pm-expression '.*' cast-expression
51 /// pm-expression '->*' cast-expression
52 ///
53 /// multiplicative-expression: [C99 6.5.5]
54 /// Note: in C++, apply pm-expression instead of cast-expression
55 /// cast-expression
56 /// multiplicative-expression '*' cast-expression
57 /// multiplicative-expression '/' cast-expression
58 /// multiplicative-expression '%' cast-expression
59 ///
60 /// additive-expression: [C99 6.5.6]
61 /// multiplicative-expression
62 /// additive-expression '+' multiplicative-expression
63 /// additive-expression '-' multiplicative-expression
64 ///
65 /// shift-expression: [C99 6.5.7]
66 /// additive-expression
67 /// shift-expression '<<' additive-expression
68 /// shift-expression '>>' additive-expression
69 ///
70 /// relational-expression: [C99 6.5.8]
71 /// shift-expression
72 /// relational-expression '<' shift-expression
73 /// relational-expression '>' shift-expression
74 /// relational-expression '<=' shift-expression
75 /// relational-expression '>=' shift-expression
76 ///
77 /// equality-expression: [C99 6.5.9]
78 /// relational-expression
79 /// equality-expression '==' relational-expression
80 /// equality-expression '!=' relational-expression
81 ///
82 /// AND-expression: [C99 6.5.10]
83 /// equality-expression
84 /// AND-expression '&' equality-expression
85 ///
86 /// exclusive-OR-expression: [C99 6.5.11]
87 /// AND-expression
88 /// exclusive-OR-expression '^' AND-expression
89 ///
90 /// inclusive-OR-expression: [C99 6.5.12]
91 /// exclusive-OR-expression
92 /// inclusive-OR-expression '|' exclusive-OR-expression
93 ///
94 /// logical-AND-expression: [C99 6.5.13]
95 /// inclusive-OR-expression
96 /// logical-AND-expression '&&' inclusive-OR-expression
97 ///
98 /// logical-OR-expression: [C99 6.5.14]
99 /// logical-AND-expression
100 /// logical-OR-expression '||' logical-AND-expression
101 ///
102 /// conditional-expression: [C99 6.5.15]
103 /// logical-OR-expression
104 /// logical-OR-expression '?' expression ':' conditional-expression
105 /// [GNU] logical-OR-expression '?' ':' conditional-expression
106 /// [C++] the third operand is an assignment-expression
107 ///
108 /// assignment-expression: [C99 6.5.16]
109 /// conditional-expression
110 /// unary-expression assignment-operator assignment-expression
111 /// [C++] throw-expression [C++ 15]
112 ///
113 /// assignment-operator: one of
114 /// = *= /= %= += -= <<= >>= &= ^= |=
115 ///
116 /// expression: [C99 6.5.17]
117 /// assignment-expression ...[opt]
118 /// expression ',' assignment-expression ...[opt]
119 /// \endverbatim
ParseExpression(TypeCastState isTypeCast)120 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
121 ExprResult LHS(ParseAssignmentExpression(isTypeCast));
122 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
123 }
124
125 /// This routine is called when the '@' is seen and consumed.
126 /// Current token is an Identifier and is not a 'try'. This
127 /// routine is necessary to disambiguate \@try-statement from,
128 /// for example, \@encode-expression.
129 ///
130 ExprResult
ParseExpressionWithLeadingAt(SourceLocation AtLoc)131 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
132 ExprResult LHS(ParseObjCAtExpression(AtLoc));
133 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
134 }
135
136 /// This routine is called when a leading '__extension__' is seen and
137 /// consumed. This is necessary because the token gets consumed in the
138 /// process of disambiguating between an expression and a declaration.
139 ExprResult
ParseExpressionWithLeadingExtension(SourceLocation ExtLoc)140 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
141 ExprResult LHS(true);
142 {
143 // Silence extension warnings in the sub-expression
144 ExtensionRAIIObject O(Diags);
145
146 LHS = ParseCastExpression(false);
147 }
148
149 if (!LHS.isInvalid())
150 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
151 LHS.get());
152
153 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
154 }
155
156 /// \brief Parse an expr that doesn't include (top-level) commas.
ParseAssignmentExpression(TypeCastState isTypeCast)157 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
158 if (Tok.is(tok::code_completion)) {
159 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
160 cutOffParsing();
161 return ExprError();
162 }
163
164 if (Tok.is(tok::kw_throw))
165 return ParseThrowExpression();
166 if (Tok.is(tok::kw_co_yield))
167 return ParseCoyieldExpression();
168
169 ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
170 /*isAddressOfOperand=*/false,
171 isTypeCast);
172 return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
173 }
174
175 /// \brief Parse an assignment expression where part of an Objective-C message
176 /// send has already been parsed.
177 ///
178 /// In this case \p LBracLoc indicates the location of the '[' of the message
179 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
180 /// the receiver of the message.
181 ///
182 /// Since this handles full assignment-expression's, it handles postfix
183 /// expressions and other binary operators for these expressions as well.
184 ExprResult
ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,SourceLocation SuperLoc,ParsedType ReceiverType,Expr * ReceiverExpr)185 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
186 SourceLocation SuperLoc,
187 ParsedType ReceiverType,
188 Expr *ReceiverExpr) {
189 ExprResult R
190 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
191 ReceiverType, ReceiverExpr);
192 R = ParsePostfixExpressionSuffix(R);
193 return ParseRHSOfBinaryExpression(R, prec::Assignment);
194 }
195
196
ParseConstantExpression(TypeCastState isTypeCast)197 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
198 // C++03 [basic.def.odr]p2:
199 // An expression is potentially evaluated unless it appears where an
200 // integral constant expression is required (see 5.19) [...].
201 // C++98 and C++11 have no such rule, but this is only a defect in C++98.
202 EnterExpressionEvaluationContext Unevaluated(Actions,
203 Sema::ConstantEvaluated);
204
205 ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
206 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
207 return Actions.ActOnConstantExpression(Res);
208 }
209
210 /// \brief Parse a constraint-expression.
211 ///
212 /// \verbatim
213 /// constraint-expression: [Concepts TS temp.constr.decl p1]
214 /// logical-or-expression
215 /// \endverbatim
ParseConstraintExpression()216 ExprResult Parser::ParseConstraintExpression() {
217 // FIXME: this may erroneously consume a function-body as the braced
218 // initializer list of a compound literal
219 //
220 // FIXME: this may erroneously consume a parenthesized rvalue reference
221 // declarator as a parenthesized address-of-label expression
222 ExprResult LHS(ParseCastExpression(/*isUnaryExpression=*/false));
223 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
224
225 return Res;
226 }
227
isNotExpressionStart()228 bool Parser::isNotExpressionStart() {
229 tok::TokenKind K = Tok.getKind();
230 if (K == tok::l_brace || K == tok::r_brace ||
231 K == tok::kw_for || K == tok::kw_while ||
232 K == tok::kw_if || K == tok::kw_else ||
233 K == tok::kw_goto || K == tok::kw_try)
234 return true;
235 // If this is a decl-specifier, we can't be at the start of an expression.
236 return isKnownToBeDeclarationSpecifier();
237 }
238
isFoldOperator(prec::Level Level)239 static bool isFoldOperator(prec::Level Level) {
240 return Level > prec::Unknown && Level != prec::Conditional;
241 }
isFoldOperator(tok::TokenKind Kind)242 static bool isFoldOperator(tok::TokenKind Kind) {
243 return isFoldOperator(getBinOpPrecedence(Kind, false, true));
244 }
245
246 /// \brief Parse a binary expression that starts with \p LHS and has a
247 /// precedence of at least \p MinPrec.
248 ExprResult
ParseRHSOfBinaryExpression(ExprResult LHS,prec::Level MinPrec)249 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
250 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
251 GreaterThanIsOperator,
252 getLangOpts().CPlusPlus11);
253 SourceLocation ColonLoc;
254
255 while (1) {
256 // If this token has a lower precedence than we are allowed to parse (e.g.
257 // because we are called recursively, or because the token is not a binop),
258 // then we are done!
259 if (NextTokPrec < MinPrec)
260 return LHS;
261
262 // Consume the operator, saving the operator token for error reporting.
263 Token OpToken = Tok;
264 ConsumeToken();
265
266 if (OpToken.is(tok::caretcaret)) {
267 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
268 }
269 // Bail out when encountering a comma followed by a token which can't
270 // possibly be the start of an expression. For instance:
271 // int f() { return 1, }
272 // We can't do this before consuming the comma, because
273 // isNotExpressionStart() looks at the token stream.
274 if (OpToken.is(tok::comma) && isNotExpressionStart()) {
275 PP.EnterToken(Tok);
276 Tok = OpToken;
277 return LHS;
278 }
279
280 // If the next token is an ellipsis, then this is a fold-expression. Leave
281 // it alone so we can handle it in the paren expression.
282 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
283 // FIXME: We can't check this via lookahead before we consume the token
284 // because that tickles a lexer bug.
285 PP.EnterToken(Tok);
286 Tok = OpToken;
287 return LHS;
288 }
289
290 // Special case handling for the ternary operator.
291 ExprResult TernaryMiddle(true);
292 if (NextTokPrec == prec::Conditional) {
293 if (Tok.isNot(tok::colon)) {
294 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
295 ColonProtectionRAIIObject X(*this);
296
297 // Handle this production specially:
298 // logical-OR-expression '?' expression ':' conditional-expression
299 // In particular, the RHS of the '?' is 'expression', not
300 // 'logical-OR-expression' as we might expect.
301 TernaryMiddle = ParseExpression();
302 if (TernaryMiddle.isInvalid()) {
303 Actions.CorrectDelayedTyposInExpr(LHS);
304 LHS = ExprError();
305 TernaryMiddle = nullptr;
306 }
307 } else {
308 // Special case handling of "X ? Y : Z" where Y is empty:
309 // logical-OR-expression '?' ':' conditional-expression [GNU]
310 TernaryMiddle = nullptr;
311 Diag(Tok, diag::ext_gnu_conditional_expr);
312 }
313
314 if (!TryConsumeToken(tok::colon, ColonLoc)) {
315 // Otherwise, we're missing a ':'. Assume that this was a typo that
316 // the user forgot. If we're not in a macro expansion, we can suggest
317 // a fixit hint. If there were two spaces before the current token,
318 // suggest inserting the colon in between them, otherwise insert ": ".
319 SourceLocation FILoc = Tok.getLocation();
320 const char *FIText = ": ";
321 const SourceManager &SM = PP.getSourceManager();
322 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
323 assert(FILoc.isFileID());
324 bool IsInvalid = false;
325 const char *SourcePtr =
326 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
327 if (!IsInvalid && *SourcePtr == ' ') {
328 SourcePtr =
329 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
330 if (!IsInvalid && *SourcePtr == ' ') {
331 FILoc = FILoc.getLocWithOffset(-1);
332 FIText = ":";
333 }
334 }
335 }
336
337 Diag(Tok, diag::err_expected)
338 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
339 Diag(OpToken, diag::note_matching) << tok::question;
340 ColonLoc = Tok.getLocation();
341 }
342 }
343
344 // Code completion for the right-hand side of an assignment expression
345 // goes through a special hook that takes the left-hand side into account.
346 if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
347 Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
348 cutOffParsing();
349 return ExprError();
350 }
351
352 // Parse another leaf here for the RHS of the operator.
353 // ParseCastExpression works here because all RHS expressions in C have it
354 // as a prefix, at least. However, in C++, an assignment-expression could
355 // be a throw-expression, which is not a valid cast-expression.
356 // Therefore we need some special-casing here.
357 // Also note that the third operand of the conditional operator is
358 // an assignment-expression in C++, and in C++11, we can have a
359 // braced-init-list on the RHS of an assignment. For better diagnostics,
360 // parse as if we were allowed braced-init-lists everywhere, and check that
361 // they only appear on the RHS of assignments later.
362 ExprResult RHS;
363 bool RHSIsInitList = false;
364 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
365 RHS = ParseBraceInitializer();
366 RHSIsInitList = true;
367 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
368 RHS = ParseAssignmentExpression();
369 else
370 RHS = ParseCastExpression(false);
371
372 if (RHS.isInvalid()) {
373 // FIXME: Errors generated by the delayed typo correction should be
374 // printed before errors from parsing the RHS, not after.
375 Actions.CorrectDelayedTyposInExpr(LHS);
376 if (TernaryMiddle.isUsable())
377 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
378 LHS = ExprError();
379 }
380
381 // Remember the precedence of this operator and get the precedence of the
382 // operator immediately to the right of the RHS.
383 prec::Level ThisPrec = NextTokPrec;
384 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
385 getLangOpts().CPlusPlus11);
386
387 // Assignment and conditional expressions are right-associative.
388 bool isRightAssoc = ThisPrec == prec::Conditional ||
389 ThisPrec == prec::Assignment;
390
391 // Get the precedence of the operator to the right of the RHS. If it binds
392 // more tightly with RHS than we do, evaluate it completely first.
393 if (ThisPrec < NextTokPrec ||
394 (ThisPrec == NextTokPrec && isRightAssoc)) {
395 if (!RHS.isInvalid() && RHSIsInitList) {
396 Diag(Tok, diag::err_init_list_bin_op)
397 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
398 RHS = ExprError();
399 }
400 // If this is left-associative, only parse things on the RHS that bind
401 // more tightly than the current operator. If it is left-associative, it
402 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
403 // A=(B=(C=D)), where each paren is a level of recursion here.
404 // The function takes ownership of the RHS.
405 RHS = ParseRHSOfBinaryExpression(RHS,
406 static_cast<prec::Level>(ThisPrec + !isRightAssoc));
407 RHSIsInitList = false;
408
409 if (RHS.isInvalid()) {
410 // FIXME: Errors generated by the delayed typo correction should be
411 // printed before errors from ParseRHSOfBinaryExpression, not after.
412 Actions.CorrectDelayedTyposInExpr(LHS);
413 if (TernaryMiddle.isUsable())
414 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
415 LHS = ExprError();
416 }
417
418 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
419 getLangOpts().CPlusPlus11);
420 }
421
422 if (!RHS.isInvalid() && RHSIsInitList) {
423 if (ThisPrec == prec::Assignment) {
424 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
425 << Actions.getExprRange(RHS.get());
426 } else {
427 Diag(OpToken, diag::err_init_list_bin_op)
428 << /*RHS*/1 << PP.getSpelling(OpToken)
429 << Actions.getExprRange(RHS.get());
430 LHS = ExprError();
431 }
432 }
433
434 ExprResult OrigLHS = LHS;
435 if (!LHS.isInvalid()) {
436 // Combine the LHS and RHS into the LHS (e.g. build AST).
437 if (TernaryMiddle.isInvalid()) {
438 // If we're using '>>' as an operator within a template
439 // argument list (in C++98), suggest the addition of
440 // parentheses so that the code remains well-formed in C++0x.
441 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
442 SuggestParentheses(OpToken.getLocation(),
443 diag::warn_cxx11_right_shift_in_template_arg,
444 SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
445 Actions.getExprRange(RHS.get()).getEnd()));
446
447 LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
448 OpToken.getKind(), LHS.get(), RHS.get());
449
450 // In this case, ActOnBinOp performed the CorrectDelayedTyposInExpr check.
451 if (!getLangOpts().CPlusPlus)
452 continue;
453 } else {
454 LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
455 LHS.get(), TernaryMiddle.get(),
456 RHS.get());
457 }
458 }
459 // Ensure potential typos aren't left undiagnosed.
460 if (LHS.isInvalid()) {
461 Actions.CorrectDelayedTyposInExpr(OrigLHS);
462 Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
463 Actions.CorrectDelayedTyposInExpr(RHS);
464 }
465 }
466 }
467
468 /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
469 /// parse a unary-expression.
470 ///
471 /// \p isAddressOfOperand exists because an id-expression that is the
472 /// operand of address-of gets special treatment due to member pointers.
473 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,TypeCastState isTypeCast)474 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
475 bool isAddressOfOperand,
476 TypeCastState isTypeCast) {
477 bool NotCastExpr;
478 ExprResult Res = ParseCastExpression(isUnaryExpression,
479 isAddressOfOperand,
480 NotCastExpr,
481 isTypeCast);
482 if (NotCastExpr)
483 Diag(Tok, diag::err_expected_expression);
484 return Res;
485 }
486
487 namespace {
488 class CastExpressionIdValidator : public CorrectionCandidateCallback {
489 public:
CastExpressionIdValidator(Token Next,bool AllowTypes,bool AllowNonTypes)490 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
491 : NextToken(Next), AllowNonTypes(AllowNonTypes) {
492 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
493 }
494
ValidateCandidate(const TypoCorrection & candidate)495 bool ValidateCandidate(const TypoCorrection &candidate) override {
496 NamedDecl *ND = candidate.getCorrectionDecl();
497 if (!ND)
498 return candidate.isKeyword();
499
500 if (isa<TypeDecl>(ND))
501 return WantTypeSpecifiers;
502
503 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
504 return false;
505
506 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
507 return true;
508
509 for (auto *C : candidate) {
510 NamedDecl *ND = C->getUnderlyingDecl();
511 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
512 return true;
513 }
514 return false;
515 }
516
517 private:
518 Token NextToken;
519 bool AllowNonTypes;
520 };
521 }
522
523 /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
524 /// a unary-expression.
525 ///
526 /// \p isAddressOfOperand exists because an id-expression that is the operand
527 /// of address-of gets special treatment due to member pointers. NotCastExpr
528 /// is set to true if the token is not the start of a cast-expression, and no
529 /// diagnostic is emitted in this case and no tokens are consumed.
530 ///
531 /// \verbatim
532 /// cast-expression: [C99 6.5.4]
533 /// unary-expression
534 /// '(' type-name ')' cast-expression
535 ///
536 /// unary-expression: [C99 6.5.3]
537 /// postfix-expression
538 /// '++' unary-expression
539 /// '--' unary-expression
540 /// [Coro] 'co_await' cast-expression
541 /// unary-operator cast-expression
542 /// 'sizeof' unary-expression
543 /// 'sizeof' '(' type-name ')'
544 /// [C++11] 'sizeof' '...' '(' identifier ')'
545 /// [GNU] '__alignof' unary-expression
546 /// [GNU] '__alignof' '(' type-name ')'
547 /// [C11] '_Alignof' '(' type-name ')'
548 /// [C++11] 'alignof' '(' type-id ')'
549 /// [GNU] '&&' identifier
550 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
551 /// [C++] new-expression
552 /// [C++] delete-expression
553 ///
554 /// unary-operator: one of
555 /// '&' '*' '+' '-' '~' '!'
556 /// [GNU] '__extension__' '__real' '__imag'
557 ///
558 /// primary-expression: [C99 6.5.1]
559 /// [C99] identifier
560 /// [C++] id-expression
561 /// constant
562 /// string-literal
563 /// [C++] boolean-literal [C++ 2.13.5]
564 /// [C++11] 'nullptr' [C++11 2.14.7]
565 /// [C++11] user-defined-literal
566 /// '(' expression ')'
567 /// [C11] generic-selection
568 /// '__func__' [C99 6.4.2.2]
569 /// [GNU] '__FUNCTION__'
570 /// [MS] '__FUNCDNAME__'
571 /// [MS] 'L__FUNCTION__'
572 /// [GNU] '__PRETTY_FUNCTION__'
573 /// [GNU] '(' compound-statement ')'
574 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
575 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
576 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
577 /// assign-expr ')'
578 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
579 /// [GNU] '__null'
580 /// [OBJC] '[' objc-message-expr ']'
581 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
582 /// [OBJC] '\@protocol' '(' identifier ')'
583 /// [OBJC] '\@encode' '(' type-name ')'
584 /// [OBJC] objc-string-literal
585 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
586 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
587 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
588 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
589 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
590 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
591 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
592 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
593 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
594 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
595 /// [C++] 'this' [C++ 9.3.2]
596 /// [G++] unary-type-trait '(' type-id ')'
597 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
598 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
599 /// [clang] '^' block-literal
600 ///
601 /// constant: [C99 6.4.4]
602 /// integer-constant
603 /// floating-constant
604 /// enumeration-constant -> identifier
605 /// character-constant
606 ///
607 /// id-expression: [C++ 5.1]
608 /// unqualified-id
609 /// qualified-id
610 ///
611 /// unqualified-id: [C++ 5.1]
612 /// identifier
613 /// operator-function-id
614 /// conversion-function-id
615 /// '~' class-name
616 /// template-id
617 ///
618 /// new-expression: [C++ 5.3.4]
619 /// '::'[opt] 'new' new-placement[opt] new-type-id
620 /// new-initializer[opt]
621 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
622 /// new-initializer[opt]
623 ///
624 /// delete-expression: [C++ 5.3.5]
625 /// '::'[opt] 'delete' cast-expression
626 /// '::'[opt] 'delete' '[' ']' cast-expression
627 ///
628 /// [GNU/Embarcadero] unary-type-trait:
629 /// '__is_arithmetic'
630 /// '__is_floating_point'
631 /// '__is_integral'
632 /// '__is_lvalue_expr'
633 /// '__is_rvalue_expr'
634 /// '__is_complete_type'
635 /// '__is_void'
636 /// '__is_array'
637 /// '__is_function'
638 /// '__is_reference'
639 /// '__is_lvalue_reference'
640 /// '__is_rvalue_reference'
641 /// '__is_fundamental'
642 /// '__is_object'
643 /// '__is_scalar'
644 /// '__is_compound'
645 /// '__is_pointer'
646 /// '__is_member_object_pointer'
647 /// '__is_member_function_pointer'
648 /// '__is_member_pointer'
649 /// '__is_const'
650 /// '__is_volatile'
651 /// '__is_trivial'
652 /// '__is_standard_layout'
653 /// '__is_signed'
654 /// '__is_unsigned'
655 ///
656 /// [GNU] unary-type-trait:
657 /// '__has_nothrow_assign'
658 /// '__has_nothrow_copy'
659 /// '__has_nothrow_constructor'
660 /// '__has_trivial_assign' [TODO]
661 /// '__has_trivial_copy' [TODO]
662 /// '__has_trivial_constructor'
663 /// '__has_trivial_destructor'
664 /// '__has_virtual_destructor'
665 /// '__is_abstract' [TODO]
666 /// '__is_class'
667 /// '__is_empty' [TODO]
668 /// '__is_enum'
669 /// '__is_final'
670 /// '__is_pod'
671 /// '__is_polymorphic'
672 /// '__is_sealed' [MS]
673 /// '__is_trivial'
674 /// '__is_union'
675 ///
676 /// [Clang] unary-type-trait:
677 /// '__trivially_copyable'
678 ///
679 /// binary-type-trait:
680 /// [GNU] '__is_base_of'
681 /// [MS] '__is_convertible_to'
682 /// '__is_convertible'
683 /// '__is_same'
684 ///
685 /// [Embarcadero] array-type-trait:
686 /// '__array_rank'
687 /// '__array_extent'
688 ///
689 /// [Embarcadero] expression-trait:
690 /// '__is_lvalue_expr'
691 /// '__is_rvalue_expr'
692 /// \endverbatim
693 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,bool & NotCastExpr,TypeCastState isTypeCast)694 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
695 bool isAddressOfOperand,
696 bool &NotCastExpr,
697 TypeCastState isTypeCast) {
698 ExprResult Res;
699 tok::TokenKind SavedKind = Tok.getKind();
700 NotCastExpr = false;
701
702 // This handles all of cast-expression, unary-expression, postfix-expression,
703 // and primary-expression. We handle them together like this for efficiency
704 // and to simplify handling of an expression starting with a '(' token: which
705 // may be one of a parenthesized expression, cast-expression, compound literal
706 // expression, or statement expression.
707 //
708 // If the parsed tokens consist of a primary-expression, the cases below
709 // break out of the switch; at the end we call ParsePostfixExpressionSuffix
710 // to handle the postfix expression suffixes. Cases that cannot be followed
711 // by postfix exprs should return without invoking
712 // ParsePostfixExpressionSuffix.
713 switch (SavedKind) {
714 case tok::l_paren: {
715 // If this expression is limited to being a unary-expression, the parent can
716 // not start a cast expression.
717 ParenParseOption ParenExprType =
718 (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
719 : CastExpr;
720 ParsedType CastTy;
721 SourceLocation RParenLoc;
722 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
723 isTypeCast == IsTypeCast, CastTy, RParenLoc);
724
725 switch (ParenExprType) {
726 case SimpleExpr: break; // Nothing else to do.
727 case CompoundStmt: break; // Nothing else to do.
728 case CompoundLiteral:
729 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
730 // postfix-expression exist, parse them now.
731 break;
732 case CastExpr:
733 // We have parsed the cast-expression and no postfix-expr pieces are
734 // following.
735 return Res;
736 }
737
738 break;
739 }
740
741 // primary-expression
742 case tok::numeric_constant:
743 // constant: integer-constant
744 // constant: floating-constant
745
746 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
747 ConsumeToken();
748 break;
749
750 case tok::kw_true:
751 case tok::kw_false:
752 return ParseCXXBoolLiteral();
753
754 case tok::kw___objc_yes:
755 case tok::kw___objc_no:
756 return ParseObjCBoolLiteral();
757
758 case tok::kw_nullptr:
759 Diag(Tok, diag::warn_cxx98_compat_nullptr);
760 return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
761
762 case tok::annot_primary_expr:
763 assert(Res.get() == nullptr && "Stray primary-expression annotation?");
764 Res = getExprAnnotation(Tok);
765 ConsumeToken();
766 break;
767
768 case tok::kw___super:
769 case tok::kw_decltype:
770 // Annotate the token and tail recurse.
771 if (TryAnnotateTypeOrScopeToken())
772 return ExprError();
773 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
774 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
775
776 case tok::identifier: { // primary-expression: identifier
777 // unqualified-id: identifier
778 // constant: enumeration-constant
779 // Turn a potentially qualified name into a annot_typename or
780 // annot_cxxscope if it would be valid. This handles things like x::y, etc.
781 if (getLangOpts().CPlusPlus) {
782 // Avoid the unnecessary parse-time lookup in the common case
783 // where the syntax forbids a type.
784 const Token &Next = NextToken();
785
786 // If this identifier was reverted from a token ID, and the next token
787 // is a parenthesis, this is likely to be a use of a type trait. Check
788 // those tokens.
789 if (Next.is(tok::l_paren) &&
790 Tok.is(tok::identifier) &&
791 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
792 IdentifierInfo *II = Tok.getIdentifierInfo();
793 // Build up the mapping of revertible type traits, for future use.
794 if (RevertibleTypeTraits.empty()) {
795 #define RTT_JOIN(X,Y) X##Y
796 #define REVERTIBLE_TYPE_TRAIT(Name) \
797 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
798 = RTT_JOIN(tok::kw_,Name)
799
800 REVERTIBLE_TYPE_TRAIT(__is_abstract);
801 REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
802 REVERTIBLE_TYPE_TRAIT(__is_array);
803 REVERTIBLE_TYPE_TRAIT(__is_assignable);
804 REVERTIBLE_TYPE_TRAIT(__is_base_of);
805 REVERTIBLE_TYPE_TRAIT(__is_class);
806 REVERTIBLE_TYPE_TRAIT(__is_complete_type);
807 REVERTIBLE_TYPE_TRAIT(__is_compound);
808 REVERTIBLE_TYPE_TRAIT(__is_const);
809 REVERTIBLE_TYPE_TRAIT(__is_constructible);
810 REVERTIBLE_TYPE_TRAIT(__is_convertible);
811 REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
812 REVERTIBLE_TYPE_TRAIT(__is_destructible);
813 REVERTIBLE_TYPE_TRAIT(__is_empty);
814 REVERTIBLE_TYPE_TRAIT(__is_enum);
815 REVERTIBLE_TYPE_TRAIT(__is_floating_point);
816 REVERTIBLE_TYPE_TRAIT(__is_final);
817 REVERTIBLE_TYPE_TRAIT(__is_function);
818 REVERTIBLE_TYPE_TRAIT(__is_fundamental);
819 REVERTIBLE_TYPE_TRAIT(__is_integral);
820 REVERTIBLE_TYPE_TRAIT(__is_interface_class);
821 REVERTIBLE_TYPE_TRAIT(__is_literal);
822 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
823 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
824 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
825 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
826 REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
827 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
828 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
829 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
830 REVERTIBLE_TYPE_TRAIT(__is_object);
831 REVERTIBLE_TYPE_TRAIT(__is_pod);
832 REVERTIBLE_TYPE_TRAIT(__is_pointer);
833 REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
834 REVERTIBLE_TYPE_TRAIT(__is_reference);
835 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
836 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
837 REVERTIBLE_TYPE_TRAIT(__is_same);
838 REVERTIBLE_TYPE_TRAIT(__is_scalar);
839 REVERTIBLE_TYPE_TRAIT(__is_sealed);
840 REVERTIBLE_TYPE_TRAIT(__is_signed);
841 REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
842 REVERTIBLE_TYPE_TRAIT(__is_trivial);
843 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
844 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
845 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
846 REVERTIBLE_TYPE_TRAIT(__is_union);
847 REVERTIBLE_TYPE_TRAIT(__is_unsigned);
848 REVERTIBLE_TYPE_TRAIT(__is_void);
849 REVERTIBLE_TYPE_TRAIT(__is_volatile);
850 #undef REVERTIBLE_TYPE_TRAIT
851 #undef RTT_JOIN
852 }
853
854 // If we find that this is in fact the name of a type trait,
855 // update the token kind in place and parse again to treat it as
856 // the appropriate kind of type trait.
857 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
858 = RevertibleTypeTraits.find(II);
859 if (Known != RevertibleTypeTraits.end()) {
860 Tok.setKind(Known->second);
861 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
862 NotCastExpr, isTypeCast);
863 }
864 }
865
866 if ((!ColonIsSacred && Next.is(tok::colon)) ||
867 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
868 tok::l_brace)) {
869 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
870 if (TryAnnotateTypeOrScopeToken())
871 return ExprError();
872 if (!Tok.is(tok::identifier))
873 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
874 }
875 }
876
877 // Consume the identifier so that we can see if it is followed by a '(' or
878 // '.'.
879 IdentifierInfo &II = *Tok.getIdentifierInfo();
880 SourceLocation ILoc = ConsumeToken();
881
882 // Support 'Class.property' and 'super.property' notation.
883 if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
884 (Actions.getTypeName(II, ILoc, getCurScope()) ||
885 // Allow the base to be 'super' if in an objc-method.
886 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
887 ConsumeToken();
888
889 // Allow either an identifier or the keyword 'class' (in C++).
890 if (Tok.isNot(tok::identifier) &&
891 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
892 Diag(Tok, diag::err_expected_property_name);
893 return ExprError();
894 }
895 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
896 SourceLocation PropertyLoc = ConsumeToken();
897
898 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
899 ILoc, PropertyLoc);
900 break;
901 }
902
903 // In an Objective-C method, if we have "super" followed by an identifier,
904 // the token sequence is ill-formed. However, if there's a ':' or ']' after
905 // that identifier, this is probably a message send with a missing open
906 // bracket. Treat it as such.
907 if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
908 getCurScope()->isInObjcMethodScope() &&
909 ((Tok.is(tok::identifier) &&
910 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
911 Tok.is(tok::code_completion))) {
912 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
913 nullptr);
914 break;
915 }
916
917 // If we have an Objective-C class name followed by an identifier
918 // and either ':' or ']', this is an Objective-C class message
919 // send that's missing the opening '['. Recovery
920 // appropriately. Also take this path if we're performing code
921 // completion after an Objective-C class name.
922 if (getLangOpts().ObjC1 &&
923 ((Tok.is(tok::identifier) && !InMessageExpression) ||
924 Tok.is(tok::code_completion))) {
925 const Token& Next = NextToken();
926 if (Tok.is(tok::code_completion) ||
927 Next.is(tok::colon) || Next.is(tok::r_square))
928 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
929 if (Typ.get()->isObjCObjectOrInterfaceType()) {
930 // Fake up a Declarator to use with ActOnTypeName.
931 DeclSpec DS(AttrFactory);
932 DS.SetRangeStart(ILoc);
933 DS.SetRangeEnd(ILoc);
934 const char *PrevSpec = nullptr;
935 unsigned DiagID;
936 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
937 Actions.getASTContext().getPrintingPolicy());
938
939 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
940 TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
941 DeclaratorInfo);
942 if (Ty.isInvalid())
943 break;
944
945 Res = ParseObjCMessageExpressionBody(SourceLocation(),
946 SourceLocation(),
947 Ty.get(), nullptr);
948 break;
949 }
950 }
951
952 // Make sure to pass down the right value for isAddressOfOperand.
953 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
954 isAddressOfOperand = false;
955
956 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
957 // need to know whether or not this identifier is a function designator or
958 // not.
959 UnqualifiedId Name;
960 CXXScopeSpec ScopeSpec;
961 SourceLocation TemplateKWLoc;
962 Token Replacement;
963 auto Validator = llvm::make_unique<CastExpressionIdValidator>(
964 Tok, isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
965 Validator->IsAddressOfOperand = isAddressOfOperand;
966 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
967 Validator->WantExpressionKeywords = false;
968 Validator->WantRemainingKeywords = false;
969 } else {
970 Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
971 }
972 Name.setIdentifier(&II, ILoc);
973 Res = Actions.ActOnIdExpression(
974 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
975 isAddressOfOperand, std::move(Validator),
976 /*IsInlineAsmIdentifier=*/false,
977 Tok.is(tok::r_paren) ? nullptr : &Replacement);
978 if (!Res.isInvalid() && !Res.get()) {
979 UnconsumeToken(Replacement);
980 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
981 NotCastExpr, isTypeCast);
982 }
983 break;
984 }
985 case tok::char_constant: // constant: character-constant
986 case tok::wide_char_constant:
987 case tok::utf8_char_constant:
988 case tok::utf16_char_constant:
989 case tok::utf32_char_constant:
990 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
991 ConsumeToken();
992 break;
993 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
994 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
995 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
996 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
997 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
998 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
999 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1000 ConsumeToken();
1001 break;
1002 case tok::string_literal: // primary-expression: string-literal
1003 case tok::wide_string_literal:
1004 case tok::utf8_string_literal:
1005 case tok::utf16_string_literal:
1006 case tok::utf32_string_literal:
1007 Res = ParseStringLiteralExpression(true);
1008 break;
1009 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
1010 Res = ParseGenericSelectionExpression();
1011 break;
1012 case tok::kw___builtin_va_arg:
1013 case tok::kw___builtin_offsetof:
1014 case tok::kw___builtin_choose_expr:
1015 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1016 case tok::kw___builtin_convertvector:
1017 return ParseBuiltinPrimaryExpression();
1018 case tok::kw___null:
1019 return Actions.ActOnGNUNullExpr(ConsumeToken());
1020
1021 case tok::plusplus: // unary-expression: '++' unary-expression [C99]
1022 case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
1023 // C++ [expr.unary] has:
1024 // unary-expression:
1025 // ++ cast-expression
1026 // -- cast-expression
1027 Token SavedTok = Tok;
1028 ConsumeToken();
1029 // One special case is implicitly handled here: if the preceding tokens are
1030 // an ambiguous cast expression, such as "(T())++", then we recurse to
1031 // determine whether the '++' is prefix or postfix.
1032 Res = ParseCastExpression(!getLangOpts().CPlusPlus,
1033 /*isAddressOfOperand*/false, NotCastExpr,
1034 NotTypeCast);
1035 if (NotCastExpr) {
1036 // If we return with NotCastExpr = true, we must not consume any tokens,
1037 // so put the token back where we found it.
1038 assert(Res.isInvalid());
1039 UnconsumeToken(SavedTok);
1040 return ExprError();
1041 }
1042 if (!Res.isInvalid())
1043 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1044 SavedKind, Res.get());
1045 return Res;
1046 }
1047 case tok::amp: { // unary-expression: '&' cast-expression
1048 // Special treatment because of member pointers
1049 SourceLocation SavedLoc = ConsumeToken();
1050 Res = ParseCastExpression(false, true);
1051 if (!Res.isInvalid())
1052 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1053 return Res;
1054 }
1055
1056 case tok::star: // unary-expression: '*' cast-expression
1057 case tok::plus: // unary-expression: '+' cast-expression
1058 case tok::minus: // unary-expression: '-' cast-expression
1059 case tok::tilde: // unary-expression: '~' cast-expression
1060 case tok::exclaim: // unary-expression: '!' cast-expression
1061 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
1062 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
1063 SourceLocation SavedLoc = ConsumeToken();
1064 Res = ParseCastExpression(false);
1065 if (!Res.isInvalid())
1066 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1067 return Res;
1068 }
1069
1070 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression
1071 SourceLocation CoawaitLoc = ConsumeToken();
1072 Res = ParseCastExpression(false);
1073 if (!Res.isInvalid())
1074 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1075 return Res;
1076 }
1077
1078 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1079 // __extension__ silences extension warnings in the subexpression.
1080 ExtensionRAIIObject O(Diags); // Use RAII to do this.
1081 SourceLocation SavedLoc = ConsumeToken();
1082 Res = ParseCastExpression(false);
1083 if (!Res.isInvalid())
1084 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1085 return Res;
1086 }
1087 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
1088 if (!getLangOpts().C11)
1089 Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
1090 // fallthrough
1091 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
1092 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
1093 // unary-expression: '__alignof' '(' type-name ')'
1094 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
1095 // unary-expression: 'sizeof' '(' type-name ')'
1096 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
1097 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1098 case tok::kw___builtin_omp_required_simd_align:
1099 return ParseUnaryExprOrTypeTraitExpression();
1100 case tok::ampamp: { // unary-expression: '&&' identifier
1101 SourceLocation AmpAmpLoc = ConsumeToken();
1102 if (Tok.isNot(tok::identifier))
1103 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1104
1105 if (getCurScope()->getFnParent() == nullptr)
1106 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1107
1108 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1109 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1110 Tok.getLocation());
1111 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1112 ConsumeToken();
1113 return Res;
1114 }
1115 case tok::kw_const_cast:
1116 case tok::kw_dynamic_cast:
1117 case tok::kw_reinterpret_cast:
1118 case tok::kw_static_cast:
1119 Res = ParseCXXCasts();
1120 break;
1121 case tok::kw_typeid:
1122 Res = ParseCXXTypeid();
1123 break;
1124 case tok::kw___uuidof:
1125 Res = ParseCXXUuidof();
1126 break;
1127 case tok::kw_this:
1128 Res = ParseCXXThis();
1129 break;
1130
1131 case tok::annot_typename:
1132 if (isStartOfObjCClassMessageMissingOpenBracket()) {
1133 ParsedType Type = getTypeAnnotation(Tok);
1134
1135 // Fake up a Declarator to use with ActOnTypeName.
1136 DeclSpec DS(AttrFactory);
1137 DS.SetRangeStart(Tok.getLocation());
1138 DS.SetRangeEnd(Tok.getLastLoc());
1139
1140 const char *PrevSpec = nullptr;
1141 unsigned DiagID;
1142 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1143 PrevSpec, DiagID, Type,
1144 Actions.getASTContext().getPrintingPolicy());
1145
1146 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1147 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1148 if (Ty.isInvalid())
1149 break;
1150
1151 ConsumeToken();
1152 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1153 Ty.get(), nullptr);
1154 break;
1155 }
1156 // Fall through
1157
1158 case tok::annot_decltype:
1159 case tok::kw_char:
1160 case tok::kw_wchar_t:
1161 case tok::kw_char16_t:
1162 case tok::kw_char32_t:
1163 case tok::kw_bool:
1164 case tok::kw_short:
1165 case tok::kw_int:
1166 case tok::kw_long:
1167 case tok::kw___int64:
1168 case tok::kw___int128:
1169 case tok::kw_signed:
1170 case tok::kw_unsigned:
1171 case tok::kw_half:
1172 case tok::kw_float:
1173 case tok::kw_double:
1174 case tok::kw___float128:
1175 case tok::kw_void:
1176 case tok::kw_typename:
1177 case tok::kw_typeof:
1178 case tok::kw___vector:
1179 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1180 #include "clang/Basic/OpenCLImageTypes.def"
1181 {
1182 if (!getLangOpts().CPlusPlus) {
1183 Diag(Tok, diag::err_expected_expression);
1184 return ExprError();
1185 }
1186
1187 if (SavedKind == tok::kw_typename) {
1188 // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1189 // typename-specifier braced-init-list
1190 if (TryAnnotateTypeOrScopeToken())
1191 return ExprError();
1192
1193 if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1194 // We are trying to parse a simple-type-specifier but might not get such
1195 // a token after error recovery.
1196 return ExprError();
1197 }
1198
1199 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1200 // simple-type-specifier braced-init-list
1201 //
1202 DeclSpec DS(AttrFactory);
1203
1204 ParseCXXSimpleTypeSpecifier(DS);
1205 if (Tok.isNot(tok::l_paren) &&
1206 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1207 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1208 << DS.getSourceRange());
1209
1210 if (Tok.is(tok::l_brace))
1211 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1212
1213 Res = ParseCXXTypeConstructExpression(DS);
1214 break;
1215 }
1216
1217 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1218 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1219 // (We can end up in this situation after tentative parsing.)
1220 if (TryAnnotateTypeOrScopeToken())
1221 return ExprError();
1222 if (!Tok.is(tok::annot_cxxscope))
1223 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1224 NotCastExpr, isTypeCast);
1225
1226 Token Next = NextToken();
1227 if (Next.is(tok::annot_template_id)) {
1228 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1229 if (TemplateId->Kind == TNK_Type_template) {
1230 // We have a qualified template-id that we know refers to a
1231 // type, translate it into a type and continue parsing as a
1232 // cast expression.
1233 CXXScopeSpec SS;
1234 ParseOptionalCXXScopeSpecifier(SS, nullptr,
1235 /*EnteringContext=*/false);
1236 AnnotateTemplateIdTokenAsType();
1237 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1238 NotCastExpr, isTypeCast);
1239 }
1240 }
1241
1242 // Parse as an id-expression.
1243 Res = ParseCXXIdExpression(isAddressOfOperand);
1244 break;
1245 }
1246
1247 case tok::annot_template_id: { // [C++] template-id
1248 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1249 if (TemplateId->Kind == TNK_Type_template) {
1250 // We have a template-id that we know refers to a type,
1251 // translate it into a type and continue parsing as a cast
1252 // expression.
1253 AnnotateTemplateIdTokenAsType();
1254 return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1255 NotCastExpr, isTypeCast);
1256 }
1257
1258 // Fall through to treat the template-id as an id-expression.
1259 }
1260
1261 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1262 Res = ParseCXXIdExpression(isAddressOfOperand);
1263 break;
1264
1265 case tok::coloncolon: {
1266 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1267 // annotates the token, tail recurse.
1268 if (TryAnnotateTypeOrScopeToken())
1269 return ExprError();
1270 if (!Tok.is(tok::coloncolon))
1271 return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1272
1273 // ::new -> [C++] new-expression
1274 // ::delete -> [C++] delete-expression
1275 SourceLocation CCLoc = ConsumeToken();
1276 if (Tok.is(tok::kw_new))
1277 return ParseCXXNewExpression(true, CCLoc);
1278 if (Tok.is(tok::kw_delete))
1279 return ParseCXXDeleteExpression(true, CCLoc);
1280
1281 // This is not a type name or scope specifier, it is an invalid expression.
1282 Diag(CCLoc, diag::err_expected_expression);
1283 return ExprError();
1284 }
1285
1286 case tok::kw_new: // [C++] new-expression
1287 return ParseCXXNewExpression(false, Tok.getLocation());
1288
1289 case tok::kw_delete: // [C++] delete-expression
1290 return ParseCXXDeleteExpression(false, Tok.getLocation());
1291
1292 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1293 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1294 SourceLocation KeyLoc = ConsumeToken();
1295 BalancedDelimiterTracker T(*this, tok::l_paren);
1296
1297 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1298 return ExprError();
1299 // C++11 [expr.unary.noexcept]p1:
1300 // The noexcept operator determines whether the evaluation of its operand,
1301 // which is an unevaluated operand, can throw an exception.
1302 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1303 ExprResult Result = ParseExpression();
1304
1305 T.consumeClose();
1306
1307 if (!Result.isInvalid())
1308 Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1309 Result.get(), T.getCloseLocation());
1310 return Result;
1311 }
1312
1313 #define TYPE_TRAIT(N,Spelling,K) \
1314 case tok::kw_##Spelling:
1315 #include "clang/Basic/TokenKinds.def"
1316 return ParseTypeTrait();
1317
1318 case tok::kw___array_rank:
1319 case tok::kw___array_extent:
1320 return ParseArrayTypeTrait();
1321
1322 case tok::kw___is_lvalue_expr:
1323 case tok::kw___is_rvalue_expr:
1324 return ParseExpressionTrait();
1325
1326 case tok::at: {
1327 SourceLocation AtLoc = ConsumeToken();
1328 return ParseObjCAtExpression(AtLoc);
1329 }
1330 case tok::caret:
1331 Res = ParseBlockLiteralExpression();
1332 break;
1333 case tok::code_completion: {
1334 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1335 cutOffParsing();
1336 return ExprError();
1337 }
1338 case tok::l_square:
1339 if (getLangOpts().CPlusPlus11) {
1340 if (getLangOpts().ObjC1) {
1341 // C++11 lambda expressions and Objective-C message sends both start with a
1342 // square bracket. There are three possibilities here:
1343 // we have a valid lambda expression, we have an invalid lambda
1344 // expression, or we have something that doesn't appear to be a lambda.
1345 // If we're in the last case, we fall back to ParseObjCMessageExpression.
1346 Res = TryParseLambdaExpression();
1347 if (!Res.isInvalid() && !Res.get())
1348 Res = ParseObjCMessageExpression();
1349 break;
1350 }
1351 Res = ParseLambdaExpression();
1352 break;
1353 }
1354 if (getLangOpts().ObjC1) {
1355 Res = ParseObjCMessageExpression();
1356 break;
1357 }
1358 // FALL THROUGH.
1359 default:
1360 NotCastExpr = true;
1361 return ExprError();
1362 }
1363
1364 // Check to see whether Res is a function designator only. If it is and we
1365 // are compiling for OpenCL, we need to return an error as this implies
1366 // that the address of the function is being taken, which is illegal in CL.
1367
1368 // These can be followed by postfix-expr pieces.
1369 Res = ParsePostfixExpressionSuffix(Res);
1370 if (getLangOpts().OpenCL)
1371 if (Expr *PostfixExpr = Res.get()) {
1372 QualType Ty = PostfixExpr->getType();
1373 if (!Ty.isNull() && Ty->isFunctionType()) {
1374 Diag(PostfixExpr->getExprLoc(),
1375 diag::err_opencl_taking_function_address_parser);
1376 return ExprError();
1377 }
1378 }
1379
1380 return Res;
1381 }
1382
1383 /// \brief Once the leading part of a postfix-expression is parsed, this
1384 /// method parses any suffixes that apply.
1385 ///
1386 /// \verbatim
1387 /// postfix-expression: [C99 6.5.2]
1388 /// primary-expression
1389 /// postfix-expression '[' expression ']'
1390 /// postfix-expression '[' braced-init-list ']'
1391 /// postfix-expression '(' argument-expression-list[opt] ')'
1392 /// postfix-expression '.' identifier
1393 /// postfix-expression '->' identifier
1394 /// postfix-expression '++'
1395 /// postfix-expression '--'
1396 /// '(' type-name ')' '{' initializer-list '}'
1397 /// '(' type-name ')' '{' initializer-list ',' '}'
1398 ///
1399 /// argument-expression-list: [C99 6.5.2]
1400 /// argument-expression ...[opt]
1401 /// argument-expression-list ',' assignment-expression ...[opt]
1402 /// \endverbatim
1403 ExprResult
ParsePostfixExpressionSuffix(ExprResult LHS)1404 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1405 // Now that the primary-expression piece of the postfix-expression has been
1406 // parsed, see if there are any postfix-expression pieces here.
1407 SourceLocation Loc;
1408 while (1) {
1409 switch (Tok.getKind()) {
1410 case tok::code_completion:
1411 if (InMessageExpression)
1412 return LHS;
1413
1414 Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1415 cutOffParsing();
1416 return ExprError();
1417
1418 case tok::identifier:
1419 // If we see identifier: after an expression, and we're not already in a
1420 // message send, then this is probably a message send with a missing
1421 // opening bracket '['.
1422 if (getLangOpts().ObjC1 && !InMessageExpression &&
1423 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1424 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1425 nullptr, LHS.get());
1426 break;
1427 }
1428
1429 // Fall through; this isn't a message send.
1430
1431 default: // Not a postfix-expression suffix.
1432 return LHS;
1433 case tok::l_square: { // postfix-expression: p-e '[' expression ']'
1434 // If we have a array postfix expression that starts on a new line and
1435 // Objective-C is enabled, it is highly likely that the user forgot a
1436 // semicolon after the base expression and that the array postfix-expr is
1437 // actually another message send. In this case, do some look-ahead to see
1438 // if the contents of the square brackets are obviously not a valid
1439 // expression and recover by pretending there is no suffix.
1440 if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1441 isSimpleObjCMessageExpression())
1442 return LHS;
1443
1444 // Reject array indices starting with a lambda-expression. '[[' is
1445 // reserved for attributes.
1446 if (CheckProhibitedCXX11Attribute()) {
1447 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1448 return ExprError();
1449 }
1450
1451 BalancedDelimiterTracker T(*this, tok::l_square);
1452 T.consumeOpen();
1453 Loc = T.getOpenLocation();
1454 ExprResult Idx, Length;
1455 SourceLocation ColonLoc;
1456 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1457 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1458 Idx = ParseBraceInitializer();
1459 } else if (getLangOpts().OpenMP) {
1460 ColonProtectionRAIIObject RAII(*this);
1461 // Parse [: or [ expr or [ expr :
1462 if (!Tok.is(tok::colon)) {
1463 // [ expr
1464 Idx = ParseExpression();
1465 }
1466 if (Tok.is(tok::colon)) {
1467 // Consume ':'
1468 ColonLoc = ConsumeToken();
1469 if (Tok.isNot(tok::r_square))
1470 Length = ParseExpression();
1471 }
1472 } else
1473 Idx = ParseExpression();
1474
1475 SourceLocation RLoc = Tok.getLocation();
1476
1477 ExprResult OrigLHS = LHS;
1478 if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() &&
1479 Tok.is(tok::r_square)) {
1480 if (ColonLoc.isValid()) {
1481 LHS = Actions.ActOnOMPArraySectionExpr(LHS.get(), Loc, Idx.get(),
1482 ColonLoc, Length.get(), RLoc);
1483 } else {
1484 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1485 Idx.get(), RLoc);
1486 }
1487 } else {
1488 LHS = ExprError();
1489 }
1490 if (LHS.isInvalid()) {
1491 (void)Actions.CorrectDelayedTyposInExpr(OrigLHS);
1492 (void)Actions.CorrectDelayedTyposInExpr(Idx);
1493 (void)Actions.CorrectDelayedTyposInExpr(Length);
1494 LHS = ExprError();
1495 Idx = ExprError();
1496 }
1497
1498 // Match the ']'.
1499 T.consumeClose();
1500 break;
1501 }
1502
1503 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
1504 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
1505 // '(' argument-expression-list[opt] ')'
1506 tok::TokenKind OpKind = Tok.getKind();
1507 InMessageExpressionRAIIObject InMessage(*this, false);
1508
1509 Expr *ExecConfig = nullptr;
1510
1511 BalancedDelimiterTracker PT(*this, tok::l_paren);
1512
1513 if (OpKind == tok::lesslessless) {
1514 ExprVector ExecConfigExprs;
1515 CommaLocsTy ExecConfigCommaLocs;
1516 SourceLocation OpenLoc = ConsumeToken();
1517
1518 if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1519 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1520 LHS = ExprError();
1521 }
1522
1523 SourceLocation CloseLoc;
1524 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1525 } else if (LHS.isInvalid()) {
1526 SkipUntil(tok::greatergreatergreater, StopAtSemi);
1527 } else {
1528 // There was an error closing the brackets
1529 Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1530 Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1531 SkipUntil(tok::greatergreatergreater, StopAtSemi);
1532 LHS = ExprError();
1533 }
1534
1535 if (!LHS.isInvalid()) {
1536 if (ExpectAndConsume(tok::l_paren))
1537 LHS = ExprError();
1538 else
1539 Loc = PrevTokLocation;
1540 }
1541
1542 if (!LHS.isInvalid()) {
1543 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1544 OpenLoc,
1545 ExecConfigExprs,
1546 CloseLoc);
1547 if (ECResult.isInvalid())
1548 LHS = ExprError();
1549 else
1550 ExecConfig = ECResult.get();
1551 }
1552 } else {
1553 PT.consumeOpen();
1554 Loc = PT.getOpenLocation();
1555 }
1556
1557 ExprVector ArgExprs;
1558 CommaLocsTy CommaLocs;
1559
1560 if (Tok.is(tok::code_completion)) {
1561 Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
1562 cutOffParsing();
1563 return ExprError();
1564 }
1565
1566 if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1567 if (Tok.isNot(tok::r_paren)) {
1568 if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
1569 Actions.CodeCompleteCall(getCurScope(), LHS.get(), ArgExprs);
1570 })) {
1571 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1572 LHS = ExprError();
1573 } else if (LHS.isInvalid()) {
1574 for (auto &E : ArgExprs)
1575 Actions.CorrectDelayedTyposInExpr(E);
1576 }
1577 }
1578 }
1579
1580 // Match the ')'.
1581 if (LHS.isInvalid()) {
1582 SkipUntil(tok::r_paren, StopAtSemi);
1583 } else if (Tok.isNot(tok::r_paren)) {
1584 bool HadDelayedTypo = false;
1585 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
1586 HadDelayedTypo = true;
1587 for (auto &E : ArgExprs)
1588 if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
1589 HadDelayedTypo = true;
1590 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
1591 // instead of PT.consumeClose() to avoid emitting extra diagnostics for
1592 // the unmatched l_paren.
1593 if (HadDelayedTypo)
1594 SkipUntil(tok::r_paren, StopAtSemi);
1595 else
1596 PT.consumeClose();
1597 LHS = ExprError();
1598 } else {
1599 assert((ArgExprs.size() == 0 ||
1600 ArgExprs.size()-1 == CommaLocs.size())&&
1601 "Unexpected number of commas!");
1602 LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1603 ArgExprs, Tok.getLocation(),
1604 ExecConfig);
1605 PT.consumeClose();
1606 }
1607
1608 break;
1609 }
1610 case tok::arrow:
1611 case tok::period: {
1612 // postfix-expression: p-e '->' template[opt] id-expression
1613 // postfix-expression: p-e '.' template[opt] id-expression
1614 tok::TokenKind OpKind = Tok.getKind();
1615 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
1616
1617 CXXScopeSpec SS;
1618 ParsedType ObjectType;
1619 bool MayBePseudoDestructor = false;
1620 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1621 Expr *Base = LHS.get();
1622 const Type* BaseType = Base->getType().getTypePtrOrNull();
1623 if (BaseType && Tok.is(tok::l_paren) &&
1624 (BaseType->isFunctionType() ||
1625 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1626 Diag(OpLoc, diag::err_function_is_not_record)
1627 << OpKind << Base->getSourceRange()
1628 << FixItHint::CreateRemoval(OpLoc);
1629 return ParsePostfixExpressionSuffix(Base);
1630 }
1631
1632 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1633 OpLoc, OpKind, ObjectType,
1634 MayBePseudoDestructor);
1635 if (LHS.isInvalid())
1636 break;
1637
1638 ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1639 /*EnteringContext=*/false,
1640 &MayBePseudoDestructor);
1641 if (SS.isNotEmpty())
1642 ObjectType = nullptr;
1643 }
1644
1645 if (Tok.is(tok::code_completion)) {
1646 // Code completion for a member access expression.
1647 Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1648 OpLoc, OpKind == tok::arrow);
1649
1650 cutOffParsing();
1651 return ExprError();
1652 }
1653
1654 if (MayBePseudoDestructor && !LHS.isInvalid()) {
1655 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
1656 ObjectType);
1657 break;
1658 }
1659
1660 // Either the action has told us that this cannot be a
1661 // pseudo-destructor expression (based on the type of base
1662 // expression), or we didn't see a '~' in the right place. We
1663 // can still parse a destructor name here, but in that case it
1664 // names a real destructor.
1665 // Allow explicit constructor calls in Microsoft mode.
1666 // FIXME: Add support for explicit call of template constructor.
1667 SourceLocation TemplateKWLoc;
1668 UnqualifiedId Name;
1669 if (getLangOpts().ObjC2 && OpKind == tok::period &&
1670 Tok.is(tok::kw_class)) {
1671 // Objective-C++:
1672 // After a '.' in a member access expression, treat the keyword
1673 // 'class' as if it were an identifier.
1674 //
1675 // This hack allows property access to the 'class' method because it is
1676 // such a common method name. For other C++ keywords that are
1677 // Objective-C method names, one must use the message send syntax.
1678 IdentifierInfo *Id = Tok.getIdentifierInfo();
1679 SourceLocation Loc = ConsumeToken();
1680 Name.setIdentifier(Id, Loc);
1681 } else if (ParseUnqualifiedId(SS,
1682 /*EnteringContext=*/false,
1683 /*AllowDestructorName=*/true,
1684 /*AllowConstructorName=*/
1685 getLangOpts().MicrosoftExt,
1686 ObjectType, TemplateKWLoc, Name)) {
1687 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1688 LHS = ExprError();
1689 }
1690
1691 if (!LHS.isInvalid())
1692 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
1693 OpKind, SS, TemplateKWLoc, Name,
1694 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
1695 : nullptr);
1696 break;
1697 }
1698 case tok::plusplus: // postfix-expression: postfix-expression '++'
1699 case tok::minusminus: // postfix-expression: postfix-expression '--'
1700 if (!LHS.isInvalid()) {
1701 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1702 Tok.getKind(), LHS.get());
1703 }
1704 ConsumeToken();
1705 break;
1706 }
1707 }
1708 }
1709
1710 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1711 /// vec_step and we are at the start of an expression or a parenthesized
1712 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1713 /// expression (isCastExpr == false) or the type (isCastExpr == true).
1714 ///
1715 /// \verbatim
1716 /// unary-expression: [C99 6.5.3]
1717 /// 'sizeof' unary-expression
1718 /// 'sizeof' '(' type-name ')'
1719 /// [GNU] '__alignof' unary-expression
1720 /// [GNU] '__alignof' '(' type-name ')'
1721 /// [C11] '_Alignof' '(' type-name ')'
1722 /// [C++0x] 'alignof' '(' type-id ')'
1723 ///
1724 /// [GNU] typeof-specifier:
1725 /// typeof ( expressions )
1726 /// typeof ( type-name )
1727 /// [GNU/C++] typeof unary-expression
1728 ///
1729 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
1730 /// vec_step ( expressions )
1731 /// vec_step ( type-name )
1732 /// \endverbatim
1733 ExprResult
ParseExprAfterUnaryExprOrTypeTrait(const Token & OpTok,bool & isCastExpr,ParsedType & CastTy,SourceRange & CastRange)1734 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1735 bool &isCastExpr,
1736 ParsedType &CastTy,
1737 SourceRange &CastRange) {
1738
1739 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
1740 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
1741 tok::kw___builtin_omp_required_simd_align) &&
1742 "Not a typeof/sizeof/alignof/vec_step expression!");
1743
1744 ExprResult Operand;
1745
1746 // If the operand doesn't start with an '(', it must be an expression.
1747 if (Tok.isNot(tok::l_paren)) {
1748 // If construct allows a form without parenthesis, user may forget to put
1749 // pathenthesis around type name.
1750 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
1751 tok::kw__Alignof)) {
1752 if (isTypeIdUnambiguously()) {
1753 DeclSpec DS(AttrFactory);
1754 ParseSpecifierQualifierList(DS);
1755 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1756 ParseDeclarator(DeclaratorInfo);
1757
1758 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1759 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1760 Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1761 << OpTok.getName()
1762 << FixItHint::CreateInsertion(LParenLoc, "(")
1763 << FixItHint::CreateInsertion(RParenLoc, ")");
1764 isCastExpr = true;
1765 return ExprEmpty();
1766 }
1767 }
1768
1769 isCastExpr = false;
1770 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1771 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
1772 << tok::l_paren;
1773 return ExprError();
1774 }
1775
1776 Operand = ParseCastExpression(true/*isUnaryExpression*/);
1777 } else {
1778 // If it starts with a '(', we know that it is either a parenthesized
1779 // type-name, or it is a unary-expression that starts with a compound
1780 // literal, or starts with a primary-expression that is a parenthesized
1781 // expression.
1782 ParenParseOption ExprType = CastExpr;
1783 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1784
1785 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1786 false, CastTy, RParenLoc);
1787 CastRange = SourceRange(LParenLoc, RParenLoc);
1788
1789 // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1790 // a type.
1791 if (ExprType == CastExpr) {
1792 isCastExpr = true;
1793 return ExprEmpty();
1794 }
1795
1796 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1797 // GNU typeof in C requires the expression to be parenthesized. Not so for
1798 // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1799 // the start of a unary-expression, but doesn't include any postfix
1800 // pieces. Parse these now if present.
1801 if (!Operand.isInvalid())
1802 Operand = ParsePostfixExpressionSuffix(Operand.get());
1803 }
1804 }
1805
1806 // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1807 isCastExpr = false;
1808 return Operand;
1809 }
1810
1811
1812 /// \brief Parse a sizeof or alignof expression.
1813 ///
1814 /// \verbatim
1815 /// unary-expression: [C99 6.5.3]
1816 /// 'sizeof' unary-expression
1817 /// 'sizeof' '(' type-name ')'
1818 /// [C++11] 'sizeof' '...' '(' identifier ')'
1819 /// [GNU] '__alignof' unary-expression
1820 /// [GNU] '__alignof' '(' type-name ')'
1821 /// [C11] '_Alignof' '(' type-name ')'
1822 /// [C++11] 'alignof' '(' type-id ')'
1823 /// \endverbatim
ParseUnaryExprOrTypeTraitExpression()1824 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1825 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
1826 tok::kw__Alignof, tok::kw_vec_step,
1827 tok::kw___builtin_omp_required_simd_align) &&
1828 "Not a sizeof/alignof/vec_step expression!");
1829 Token OpTok = Tok;
1830 ConsumeToken();
1831
1832 // [C++11] 'sizeof' '...' '(' identifier ')'
1833 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1834 SourceLocation EllipsisLoc = ConsumeToken();
1835 SourceLocation LParenLoc, RParenLoc;
1836 IdentifierInfo *Name = nullptr;
1837 SourceLocation NameLoc;
1838 if (Tok.is(tok::l_paren)) {
1839 BalancedDelimiterTracker T(*this, tok::l_paren);
1840 T.consumeOpen();
1841 LParenLoc = T.getOpenLocation();
1842 if (Tok.is(tok::identifier)) {
1843 Name = Tok.getIdentifierInfo();
1844 NameLoc = ConsumeToken();
1845 T.consumeClose();
1846 RParenLoc = T.getCloseLocation();
1847 if (RParenLoc.isInvalid())
1848 RParenLoc = PP.getLocForEndOfToken(NameLoc);
1849 } else {
1850 Diag(Tok, diag::err_expected_parameter_pack);
1851 SkipUntil(tok::r_paren, StopAtSemi);
1852 }
1853 } else if (Tok.is(tok::identifier)) {
1854 Name = Tok.getIdentifierInfo();
1855 NameLoc = ConsumeToken();
1856 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1857 RParenLoc = PP.getLocForEndOfToken(NameLoc);
1858 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1859 << Name
1860 << FixItHint::CreateInsertion(LParenLoc, "(")
1861 << FixItHint::CreateInsertion(RParenLoc, ")");
1862 } else {
1863 Diag(Tok, diag::err_sizeof_parameter_pack);
1864 }
1865
1866 if (!Name)
1867 return ExprError();
1868
1869 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1870 Sema::ReuseLambdaContextDecl);
1871
1872 return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1873 OpTok.getLocation(),
1874 *Name, NameLoc,
1875 RParenLoc);
1876 }
1877
1878 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
1879 Diag(OpTok, diag::warn_cxx98_compat_alignof);
1880
1881 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1882 Sema::ReuseLambdaContextDecl);
1883
1884 bool isCastExpr;
1885 ParsedType CastTy;
1886 SourceRange CastRange;
1887 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1888 isCastExpr,
1889 CastTy,
1890 CastRange);
1891
1892 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1893 if (OpTok.isOneOf(tok::kw_alignof, tok::kw___alignof, tok::kw__Alignof))
1894 ExprKind = UETT_AlignOf;
1895 else if (OpTok.is(tok::kw_vec_step))
1896 ExprKind = UETT_VecStep;
1897 else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
1898 ExprKind = UETT_OpenMPRequiredSimdAlign;
1899
1900 if (isCastExpr)
1901 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1902 ExprKind,
1903 /*isType=*/true,
1904 CastTy.getAsOpaquePtr(),
1905 CastRange);
1906
1907 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
1908 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1909
1910 // If we get here, the operand to the sizeof/alignof was an expresion.
1911 if (!Operand.isInvalid())
1912 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1913 ExprKind,
1914 /*isType=*/false,
1915 Operand.get(),
1916 CastRange);
1917 return Operand;
1918 }
1919
1920 /// ParseBuiltinPrimaryExpression
1921 ///
1922 /// \verbatim
1923 /// primary-expression: [C99 6.5.1]
1924 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1925 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1926 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1927 /// assign-expr ')'
1928 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1929 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
1930 ///
1931 /// [GNU] offsetof-member-designator:
1932 /// [GNU] identifier
1933 /// [GNU] offsetof-member-designator '.' identifier
1934 /// [GNU] offsetof-member-designator '[' expression ']'
1935 /// \endverbatim
ParseBuiltinPrimaryExpression()1936 ExprResult Parser::ParseBuiltinPrimaryExpression() {
1937 ExprResult Res;
1938 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1939
1940 tok::TokenKind T = Tok.getKind();
1941 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
1942
1943 // All of these start with an open paren.
1944 if (Tok.isNot(tok::l_paren))
1945 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
1946 << tok::l_paren);
1947
1948 BalancedDelimiterTracker PT(*this, tok::l_paren);
1949 PT.consumeOpen();
1950
1951 // TODO: Build AST.
1952
1953 switch (T) {
1954 default: llvm_unreachable("Not a builtin primary expression!");
1955 case tok::kw___builtin_va_arg: {
1956 ExprResult Expr(ParseAssignmentExpression());
1957
1958 if (ExpectAndConsume(tok::comma)) {
1959 SkipUntil(tok::r_paren, StopAtSemi);
1960 Expr = ExprError();
1961 }
1962
1963 TypeResult Ty = ParseTypeName();
1964
1965 if (Tok.isNot(tok::r_paren)) {
1966 Diag(Tok, diag::err_expected) << tok::r_paren;
1967 Expr = ExprError();
1968 }
1969
1970 if (Expr.isInvalid() || Ty.isInvalid())
1971 Res = ExprError();
1972 else
1973 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
1974 break;
1975 }
1976 case tok::kw___builtin_offsetof: {
1977 SourceLocation TypeLoc = Tok.getLocation();
1978 TypeResult Ty = ParseTypeName();
1979 if (Ty.isInvalid()) {
1980 SkipUntil(tok::r_paren, StopAtSemi);
1981 return ExprError();
1982 }
1983
1984 if (ExpectAndConsume(tok::comma)) {
1985 SkipUntil(tok::r_paren, StopAtSemi);
1986 return ExprError();
1987 }
1988
1989 // We must have at least one identifier here.
1990 if (Tok.isNot(tok::identifier)) {
1991 Diag(Tok, diag::err_expected) << tok::identifier;
1992 SkipUntil(tok::r_paren, StopAtSemi);
1993 return ExprError();
1994 }
1995
1996 // Keep track of the various subcomponents we see.
1997 SmallVector<Sema::OffsetOfComponent, 4> Comps;
1998
1999 Comps.push_back(Sema::OffsetOfComponent());
2000 Comps.back().isBrackets = false;
2001 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2002 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2003
2004 // FIXME: This loop leaks the index expressions on error.
2005 while (1) {
2006 if (Tok.is(tok::period)) {
2007 // offsetof-member-designator: offsetof-member-designator '.' identifier
2008 Comps.push_back(Sema::OffsetOfComponent());
2009 Comps.back().isBrackets = false;
2010 Comps.back().LocStart = ConsumeToken();
2011
2012 if (Tok.isNot(tok::identifier)) {
2013 Diag(Tok, diag::err_expected) << tok::identifier;
2014 SkipUntil(tok::r_paren, StopAtSemi);
2015 return ExprError();
2016 }
2017 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2018 Comps.back().LocEnd = ConsumeToken();
2019
2020 } else if (Tok.is(tok::l_square)) {
2021 if (CheckProhibitedCXX11Attribute())
2022 return ExprError();
2023
2024 // offsetof-member-designator: offsetof-member-design '[' expression ']'
2025 Comps.push_back(Sema::OffsetOfComponent());
2026 Comps.back().isBrackets = true;
2027 BalancedDelimiterTracker ST(*this, tok::l_square);
2028 ST.consumeOpen();
2029 Comps.back().LocStart = ST.getOpenLocation();
2030 Res = ParseExpression();
2031 if (Res.isInvalid()) {
2032 SkipUntil(tok::r_paren, StopAtSemi);
2033 return Res;
2034 }
2035 Comps.back().U.E = Res.get();
2036
2037 ST.consumeClose();
2038 Comps.back().LocEnd = ST.getCloseLocation();
2039 } else {
2040 if (Tok.isNot(tok::r_paren)) {
2041 PT.consumeClose();
2042 Res = ExprError();
2043 } else if (Ty.isInvalid()) {
2044 Res = ExprError();
2045 } else {
2046 PT.consumeClose();
2047 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2048 Ty.get(), Comps,
2049 PT.getCloseLocation());
2050 }
2051 break;
2052 }
2053 }
2054 break;
2055 }
2056 case tok::kw___builtin_choose_expr: {
2057 ExprResult Cond(ParseAssignmentExpression());
2058 if (Cond.isInvalid()) {
2059 SkipUntil(tok::r_paren, StopAtSemi);
2060 return Cond;
2061 }
2062 if (ExpectAndConsume(tok::comma)) {
2063 SkipUntil(tok::r_paren, StopAtSemi);
2064 return ExprError();
2065 }
2066
2067 ExprResult Expr1(ParseAssignmentExpression());
2068 if (Expr1.isInvalid()) {
2069 SkipUntil(tok::r_paren, StopAtSemi);
2070 return Expr1;
2071 }
2072 if (ExpectAndConsume(tok::comma)) {
2073 SkipUntil(tok::r_paren, StopAtSemi);
2074 return ExprError();
2075 }
2076
2077 ExprResult Expr2(ParseAssignmentExpression());
2078 if (Expr2.isInvalid()) {
2079 SkipUntil(tok::r_paren, StopAtSemi);
2080 return Expr2;
2081 }
2082 if (Tok.isNot(tok::r_paren)) {
2083 Diag(Tok, diag::err_expected) << tok::r_paren;
2084 return ExprError();
2085 }
2086 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2087 Expr2.get(), ConsumeParen());
2088 break;
2089 }
2090 case tok::kw___builtin_astype: {
2091 // The first argument is an expression to be converted, followed by a comma.
2092 ExprResult Expr(ParseAssignmentExpression());
2093 if (Expr.isInvalid()) {
2094 SkipUntil(tok::r_paren, StopAtSemi);
2095 return ExprError();
2096 }
2097
2098 if (ExpectAndConsume(tok::comma)) {
2099 SkipUntil(tok::r_paren, StopAtSemi);
2100 return ExprError();
2101 }
2102
2103 // Second argument is the type to bitcast to.
2104 TypeResult DestTy = ParseTypeName();
2105 if (DestTy.isInvalid())
2106 return ExprError();
2107
2108 // Attempt to consume the r-paren.
2109 if (Tok.isNot(tok::r_paren)) {
2110 Diag(Tok, diag::err_expected) << tok::r_paren;
2111 SkipUntil(tok::r_paren, StopAtSemi);
2112 return ExprError();
2113 }
2114
2115 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2116 ConsumeParen());
2117 break;
2118 }
2119 case tok::kw___builtin_convertvector: {
2120 // The first argument is an expression to be converted, followed by a comma.
2121 ExprResult Expr(ParseAssignmentExpression());
2122 if (Expr.isInvalid()) {
2123 SkipUntil(tok::r_paren, StopAtSemi);
2124 return ExprError();
2125 }
2126
2127 if (ExpectAndConsume(tok::comma)) {
2128 SkipUntil(tok::r_paren, StopAtSemi);
2129 return ExprError();
2130 }
2131
2132 // Second argument is the type to bitcast to.
2133 TypeResult DestTy = ParseTypeName();
2134 if (DestTy.isInvalid())
2135 return ExprError();
2136
2137 // Attempt to consume the r-paren.
2138 if (Tok.isNot(tok::r_paren)) {
2139 Diag(Tok, diag::err_expected) << tok::r_paren;
2140 SkipUntil(tok::r_paren, StopAtSemi);
2141 return ExprError();
2142 }
2143
2144 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2145 ConsumeParen());
2146 break;
2147 }
2148 }
2149
2150 if (Res.isInvalid())
2151 return ExprError();
2152
2153 // These can be followed by postfix-expr pieces because they are
2154 // primary-expressions.
2155 return ParsePostfixExpressionSuffix(Res.get());
2156 }
2157
2158 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2159 /// based on what is allowed by ExprType. The actual thing parsed is returned
2160 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2161 /// not the parsed cast-expression.
2162 ///
2163 /// \verbatim
2164 /// primary-expression: [C99 6.5.1]
2165 /// '(' expression ')'
2166 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
2167 /// postfix-expression: [C99 6.5.2]
2168 /// '(' type-name ')' '{' initializer-list '}'
2169 /// '(' type-name ')' '{' initializer-list ',' '}'
2170 /// cast-expression: [C99 6.5.4]
2171 /// '(' type-name ')' cast-expression
2172 /// [ARC] bridged-cast-expression
2173 /// [ARC] bridged-cast-expression:
2174 /// (__bridge type-name) cast-expression
2175 /// (__bridge_transfer type-name) cast-expression
2176 /// (__bridge_retained type-name) cast-expression
2177 /// fold-expression: [C++1z]
2178 /// '(' cast-expression fold-operator '...' ')'
2179 /// '(' '...' fold-operator cast-expression ')'
2180 /// '(' cast-expression fold-operator '...'
2181 /// fold-operator cast-expression ')'
2182 /// \endverbatim
2183 ExprResult
ParseParenExpression(ParenParseOption & ExprType,bool stopIfCastExpr,bool isTypeCast,ParsedType & CastTy,SourceLocation & RParenLoc)2184 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2185 bool isTypeCast, ParsedType &CastTy,
2186 SourceLocation &RParenLoc) {
2187 assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2188 ColonProtectionRAIIObject ColonProtection(*this, false);
2189 BalancedDelimiterTracker T(*this, tok::l_paren);
2190 if (T.consumeOpen())
2191 return ExprError();
2192 SourceLocation OpenLoc = T.getOpenLocation();
2193
2194 ExprResult Result(true);
2195 bool isAmbiguousTypeId;
2196 CastTy = nullptr;
2197
2198 if (Tok.is(tok::code_completion)) {
2199 Actions.CodeCompleteOrdinaryName(getCurScope(),
2200 ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
2201 : Sema::PCC_Expression);
2202 cutOffParsing();
2203 return ExprError();
2204 }
2205
2206 // Diagnose use of bridge casts in non-arc mode.
2207 bool BridgeCast = (getLangOpts().ObjC2 &&
2208 Tok.isOneOf(tok::kw___bridge,
2209 tok::kw___bridge_transfer,
2210 tok::kw___bridge_retained,
2211 tok::kw___bridge_retain));
2212 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2213 if (!TryConsumeToken(tok::kw___bridge)) {
2214 StringRef BridgeCastName = Tok.getName();
2215 SourceLocation BridgeKeywordLoc = ConsumeToken();
2216 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2217 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2218 << BridgeCastName
2219 << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2220 }
2221 BridgeCast = false;
2222 }
2223
2224 // None of these cases should fall through with an invalid Result
2225 // unless they've already reported an error.
2226 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2227 Diag(Tok, diag::ext_gnu_statement_expr);
2228
2229 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2230 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2231 } else {
2232 // Find the nearest non-record decl context. Variables declared in a
2233 // statement expression behave as if they were declared in the enclosing
2234 // function, block, or other code construct.
2235 DeclContext *CodeDC = Actions.CurContext;
2236 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2237 CodeDC = CodeDC->getParent();
2238 assert(CodeDC && !CodeDC->isFileContext() &&
2239 "statement expr not in code context");
2240 }
2241 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2242
2243 Actions.ActOnStartStmtExpr();
2244
2245 StmtResult Stmt(ParseCompoundStatement(true));
2246 ExprType = CompoundStmt;
2247
2248 // If the substmt parsed correctly, build the AST node.
2249 if (!Stmt.isInvalid()) {
2250 Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
2251 } else {
2252 Actions.ActOnStmtExprError();
2253 }
2254 }
2255 } else if (ExprType >= CompoundLiteral && BridgeCast) {
2256 tok::TokenKind tokenKind = Tok.getKind();
2257 SourceLocation BridgeKeywordLoc = ConsumeToken();
2258
2259 // Parse an Objective-C ARC ownership cast expression.
2260 ObjCBridgeCastKind Kind;
2261 if (tokenKind == tok::kw___bridge)
2262 Kind = OBC_Bridge;
2263 else if (tokenKind == tok::kw___bridge_transfer)
2264 Kind = OBC_BridgeTransfer;
2265 else if (tokenKind == tok::kw___bridge_retained)
2266 Kind = OBC_BridgeRetained;
2267 else {
2268 // As a hopefully temporary workaround, allow __bridge_retain as
2269 // a synonym for __bridge_retained, but only in system headers.
2270 assert(tokenKind == tok::kw___bridge_retain);
2271 Kind = OBC_BridgeRetained;
2272 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2273 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2274 << FixItHint::CreateReplacement(BridgeKeywordLoc,
2275 "__bridge_retained");
2276 }
2277
2278 TypeResult Ty = ParseTypeName();
2279 T.consumeClose();
2280 ColonProtection.restore();
2281 RParenLoc = T.getCloseLocation();
2282 ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2283
2284 if (Ty.isInvalid() || SubExpr.isInvalid())
2285 return ExprError();
2286
2287 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2288 BridgeKeywordLoc, Ty.get(),
2289 RParenLoc, SubExpr.get());
2290 } else if (ExprType >= CompoundLiteral &&
2291 isTypeIdInParens(isAmbiguousTypeId)) {
2292
2293 // Otherwise, this is a compound literal expression or cast expression.
2294
2295 // In C++, if the type-id is ambiguous we disambiguate based on context.
2296 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2297 // in which case we should treat it as type-id.
2298 // if stopIfCastExpr is false, we need to determine the context past the
2299 // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2300 if (isAmbiguousTypeId && !stopIfCastExpr) {
2301 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2302 ColonProtection);
2303 RParenLoc = T.getCloseLocation();
2304 return res;
2305 }
2306
2307 // Parse the type declarator.
2308 DeclSpec DS(AttrFactory);
2309 ParseSpecifierQualifierList(DS);
2310 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2311 ParseDeclarator(DeclaratorInfo);
2312
2313 // If our type is followed by an identifier and either ':' or ']', then
2314 // this is probably an Objective-C message send where the leading '[' is
2315 // missing. Recover as if that were the case.
2316 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2317 !InMessageExpression && getLangOpts().ObjC1 &&
2318 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2319 TypeResult Ty;
2320 {
2321 InMessageExpressionRAIIObject InMessage(*this, false);
2322 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2323 }
2324 Result = ParseObjCMessageExpressionBody(SourceLocation(),
2325 SourceLocation(),
2326 Ty.get(), nullptr);
2327 } else {
2328 // Match the ')'.
2329 T.consumeClose();
2330 ColonProtection.restore();
2331 RParenLoc = T.getCloseLocation();
2332 if (Tok.is(tok::l_brace)) {
2333 ExprType = CompoundLiteral;
2334 TypeResult Ty;
2335 {
2336 InMessageExpressionRAIIObject InMessage(*this, false);
2337 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2338 }
2339 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2340 }
2341
2342 if (ExprType == CastExpr) {
2343 // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2344
2345 if (DeclaratorInfo.isInvalidType())
2346 return ExprError();
2347
2348 // Note that this doesn't parse the subsequent cast-expression, it just
2349 // returns the parsed type to the callee.
2350 if (stopIfCastExpr) {
2351 TypeResult Ty;
2352 {
2353 InMessageExpressionRAIIObject InMessage(*this, false);
2354 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2355 }
2356 CastTy = Ty.get();
2357 return ExprResult();
2358 }
2359
2360 // Reject the cast of super idiom in ObjC.
2361 if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2362 Tok.getIdentifierInfo() == Ident_super &&
2363 getCurScope()->isInObjcMethodScope() &&
2364 GetLookAheadToken(1).isNot(tok::period)) {
2365 Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2366 << SourceRange(OpenLoc, RParenLoc);
2367 return ExprError();
2368 }
2369
2370 // Parse the cast-expression that follows it next.
2371 // TODO: For cast expression with CastTy.
2372 Result = ParseCastExpression(/*isUnaryExpression=*/false,
2373 /*isAddressOfOperand=*/false,
2374 /*isTypeCast=*/IsTypeCast);
2375 if (!Result.isInvalid()) {
2376 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2377 DeclaratorInfo, CastTy,
2378 RParenLoc, Result.get());
2379 }
2380 return Result;
2381 }
2382
2383 Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2384 return ExprError();
2385 }
2386 } else if (Tok.is(tok::ellipsis) &&
2387 isFoldOperator(NextToken().getKind())) {
2388 return ParseFoldExpression(ExprResult(), T);
2389 } else if (isTypeCast) {
2390 // Parse the expression-list.
2391 InMessageExpressionRAIIObject InMessage(*this, false);
2392
2393 ExprVector ArgExprs;
2394 CommaLocsTy CommaLocs;
2395
2396 if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2397 // FIXME: If we ever support comma expressions as operands to
2398 // fold-expressions, we'll need to allow multiple ArgExprs here.
2399 if (ArgExprs.size() == 1 && isFoldOperator(Tok.getKind()) &&
2400 NextToken().is(tok::ellipsis))
2401 return ParseFoldExpression(Result, T);
2402
2403 ExprType = SimpleExpr;
2404 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2405 ArgExprs);
2406 }
2407 } else {
2408 InMessageExpressionRAIIObject InMessage(*this, false);
2409
2410 Result = ParseExpression(MaybeTypeCast);
2411 if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
2412 // Correct typos in non-C++ code earlier so that implicit-cast-like
2413 // expressions are parsed correctly.
2414 Result = Actions.CorrectDelayedTyposInExpr(Result);
2415 }
2416 ExprType = SimpleExpr;
2417
2418 if (isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis))
2419 return ParseFoldExpression(Result, T);
2420
2421 // Don't build a paren expression unless we actually match a ')'.
2422 if (!Result.isInvalid() && Tok.is(tok::r_paren))
2423 Result =
2424 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2425 }
2426
2427 // Match the ')'.
2428 if (Result.isInvalid()) {
2429 SkipUntil(tok::r_paren, StopAtSemi);
2430 return ExprError();
2431 }
2432
2433 T.consumeClose();
2434 RParenLoc = T.getCloseLocation();
2435 return Result;
2436 }
2437
2438 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2439 /// and we are at the left brace.
2440 ///
2441 /// \verbatim
2442 /// postfix-expression: [C99 6.5.2]
2443 /// '(' type-name ')' '{' initializer-list '}'
2444 /// '(' type-name ')' '{' initializer-list ',' '}'
2445 /// \endverbatim
2446 ExprResult
ParseCompoundLiteralExpression(ParsedType Ty,SourceLocation LParenLoc,SourceLocation RParenLoc)2447 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2448 SourceLocation LParenLoc,
2449 SourceLocation RParenLoc) {
2450 assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2451 if (!getLangOpts().C99) // Compound literals don't exist in C90.
2452 Diag(LParenLoc, diag::ext_c99_compound_literal);
2453 ExprResult Result = ParseInitializer();
2454 if (!Result.isInvalid() && Ty)
2455 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2456 return Result;
2457 }
2458
2459 /// ParseStringLiteralExpression - This handles the various token types that
2460 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2461 /// translation phase #6].
2462 ///
2463 /// \verbatim
2464 /// primary-expression: [C99 6.5.1]
2465 /// string-literal
2466 /// \verbatim
ParseStringLiteralExpression(bool AllowUserDefinedLiteral)2467 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2468 assert(isTokenStringLiteral() && "Not a string literal!");
2469
2470 // String concat. Note that keywords like __func__ and __FUNCTION__ are not
2471 // considered to be strings for concatenation purposes.
2472 SmallVector<Token, 4> StringToks;
2473
2474 do {
2475 StringToks.push_back(Tok);
2476 ConsumeStringToken();
2477 } while (isTokenStringLiteral());
2478
2479 // Pass the set of string tokens, ready for concatenation, to the actions.
2480 return Actions.ActOnStringLiteral(StringToks,
2481 AllowUserDefinedLiteral ? getCurScope()
2482 : nullptr);
2483 }
2484
2485 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2486 /// [C11 6.5.1.1].
2487 ///
2488 /// \verbatim
2489 /// generic-selection:
2490 /// _Generic ( assignment-expression , generic-assoc-list )
2491 /// generic-assoc-list:
2492 /// generic-association
2493 /// generic-assoc-list , generic-association
2494 /// generic-association:
2495 /// type-name : assignment-expression
2496 /// default : assignment-expression
2497 /// \endverbatim
ParseGenericSelectionExpression()2498 ExprResult Parser::ParseGenericSelectionExpression() {
2499 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2500 SourceLocation KeyLoc = ConsumeToken();
2501
2502 if (!getLangOpts().C11)
2503 Diag(KeyLoc, diag::ext_c11_generic_selection);
2504
2505 BalancedDelimiterTracker T(*this, tok::l_paren);
2506 if (T.expectAndConsume())
2507 return ExprError();
2508
2509 ExprResult ControllingExpr;
2510 {
2511 // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2512 // not evaluated."
2513 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2514 ControllingExpr =
2515 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
2516 if (ControllingExpr.isInvalid()) {
2517 SkipUntil(tok::r_paren, StopAtSemi);
2518 return ExprError();
2519 }
2520 }
2521
2522 if (ExpectAndConsume(tok::comma)) {
2523 SkipUntil(tok::r_paren, StopAtSemi);
2524 return ExprError();
2525 }
2526
2527 SourceLocation DefaultLoc;
2528 TypeVector Types;
2529 ExprVector Exprs;
2530 do {
2531 ParsedType Ty;
2532 if (Tok.is(tok::kw_default)) {
2533 // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2534 // generic association."
2535 if (!DefaultLoc.isInvalid()) {
2536 Diag(Tok, diag::err_duplicate_default_assoc);
2537 Diag(DefaultLoc, diag::note_previous_default_assoc);
2538 SkipUntil(tok::r_paren, StopAtSemi);
2539 return ExprError();
2540 }
2541 DefaultLoc = ConsumeToken();
2542 Ty = nullptr;
2543 } else {
2544 ColonProtectionRAIIObject X(*this);
2545 TypeResult TR = ParseTypeName();
2546 if (TR.isInvalid()) {
2547 SkipUntil(tok::r_paren, StopAtSemi);
2548 return ExprError();
2549 }
2550 Ty = TR.get();
2551 }
2552 Types.push_back(Ty);
2553
2554 if (ExpectAndConsume(tok::colon)) {
2555 SkipUntil(tok::r_paren, StopAtSemi);
2556 return ExprError();
2557 }
2558
2559 // FIXME: These expressions should be parsed in a potentially potentially
2560 // evaluated context.
2561 ExprResult ER(
2562 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
2563 if (ER.isInvalid()) {
2564 SkipUntil(tok::r_paren, StopAtSemi);
2565 return ExprError();
2566 }
2567 Exprs.push_back(ER.get());
2568 } while (TryConsumeToken(tok::comma));
2569
2570 T.consumeClose();
2571 if (T.getCloseLocation().isInvalid())
2572 return ExprError();
2573
2574 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2575 T.getCloseLocation(),
2576 ControllingExpr.get(),
2577 Types, Exprs);
2578 }
2579
2580 /// \brief Parse A C++1z fold-expression after the opening paren and optional
2581 /// left-hand-side expression.
2582 ///
2583 /// \verbatim
2584 /// fold-expression:
2585 /// ( cast-expression fold-operator ... )
2586 /// ( ... fold-operator cast-expression )
2587 /// ( cast-expression fold-operator ... fold-operator cast-expression )
ParseFoldExpression(ExprResult LHS,BalancedDelimiterTracker & T)2588 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
2589 BalancedDelimiterTracker &T) {
2590 if (LHS.isInvalid()) {
2591 T.skipToEnd();
2592 return true;
2593 }
2594
2595 tok::TokenKind Kind = tok::unknown;
2596 SourceLocation FirstOpLoc;
2597 if (LHS.isUsable()) {
2598 Kind = Tok.getKind();
2599 assert(isFoldOperator(Kind) && "missing fold-operator");
2600 FirstOpLoc = ConsumeToken();
2601 }
2602
2603 assert(Tok.is(tok::ellipsis) && "not a fold-expression");
2604 SourceLocation EllipsisLoc = ConsumeToken();
2605
2606 ExprResult RHS;
2607 if (Tok.isNot(tok::r_paren)) {
2608 if (!isFoldOperator(Tok.getKind()))
2609 return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
2610
2611 if (Kind != tok::unknown && Tok.getKind() != Kind)
2612 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
2613 << SourceRange(FirstOpLoc);
2614 Kind = Tok.getKind();
2615 ConsumeToken();
2616
2617 RHS = ParseExpression();
2618 if (RHS.isInvalid()) {
2619 T.skipToEnd();
2620 return true;
2621 }
2622 }
2623
2624 Diag(EllipsisLoc, getLangOpts().CPlusPlus1z
2625 ? diag::warn_cxx14_compat_fold_expression
2626 : diag::ext_fold_expression);
2627
2628 T.consumeClose();
2629 return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
2630 EllipsisLoc, RHS.get(), T.getCloseLocation());
2631 }
2632
2633 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2634 ///
2635 /// \verbatim
2636 /// argument-expression-list:
2637 /// assignment-expression
2638 /// argument-expression-list , assignment-expression
2639 ///
2640 /// [C++] expression-list:
2641 /// [C++] assignment-expression
2642 /// [C++] expression-list , assignment-expression
2643 ///
2644 /// [C++0x] expression-list:
2645 /// [C++0x] initializer-list
2646 ///
2647 /// [C++0x] initializer-list
2648 /// [C++0x] initializer-clause ...[opt]
2649 /// [C++0x] initializer-list , initializer-clause ...[opt]
2650 ///
2651 /// [C++0x] initializer-clause:
2652 /// [C++0x] assignment-expression
2653 /// [C++0x] braced-init-list
2654 /// \endverbatim
ParseExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs,std::function<void ()> Completer)2655 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
2656 SmallVectorImpl<SourceLocation> &CommaLocs,
2657 std::function<void()> Completer) {
2658 bool SawError = false;
2659 while (1) {
2660 if (Tok.is(tok::code_completion)) {
2661 if (Completer)
2662 Completer();
2663 else
2664 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2665 cutOffParsing();
2666 return true;
2667 }
2668
2669 ExprResult Expr;
2670 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2671 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2672 Expr = ParseBraceInitializer();
2673 } else
2674 Expr = ParseAssignmentExpression();
2675
2676 if (Tok.is(tok::ellipsis))
2677 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2678 if (Expr.isInvalid()) {
2679 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
2680 SawError = true;
2681 } else {
2682 Exprs.push_back(Expr.get());
2683 }
2684
2685 if (Tok.isNot(tok::comma))
2686 break;
2687 // Move to the next argument, remember where the comma was.
2688 CommaLocs.push_back(ConsumeToken());
2689 }
2690 if (SawError) {
2691 // Ensure typos get diagnosed when errors were encountered while parsing the
2692 // expression list.
2693 for (auto &E : Exprs) {
2694 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
2695 if (Expr.isUsable()) E = Expr.get();
2696 }
2697 }
2698 return SawError;
2699 }
2700
2701 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2702 /// used for misc language extensions.
2703 ///
2704 /// \verbatim
2705 /// simple-expression-list:
2706 /// assignment-expression
2707 /// simple-expression-list , assignment-expression
2708 /// \endverbatim
2709 bool
ParseSimpleExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs)2710 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2711 SmallVectorImpl<SourceLocation> &CommaLocs) {
2712 while (1) {
2713 ExprResult Expr = ParseAssignmentExpression();
2714 if (Expr.isInvalid())
2715 return true;
2716
2717 Exprs.push_back(Expr.get());
2718
2719 if (Tok.isNot(tok::comma))
2720 return false;
2721
2722 // Move to the next argument, remember where the comma was.
2723 CommaLocs.push_back(ConsumeToken());
2724 }
2725 }
2726
2727 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2728 ///
2729 /// \verbatim
2730 /// [clang] block-id:
2731 /// [clang] specifier-qualifier-list block-declarator
2732 /// \endverbatim
ParseBlockId(SourceLocation CaretLoc)2733 void Parser::ParseBlockId(SourceLocation CaretLoc) {
2734 if (Tok.is(tok::code_completion)) {
2735 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2736 return cutOffParsing();
2737 }
2738
2739 // Parse the specifier-qualifier-list piece.
2740 DeclSpec DS(AttrFactory);
2741 ParseSpecifierQualifierList(DS);
2742
2743 // Parse the block-declarator.
2744 Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2745 ParseDeclarator(DeclaratorInfo);
2746
2747 MaybeParseGNUAttributes(DeclaratorInfo);
2748
2749 // Inform sema that we are starting a block.
2750 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2751 }
2752
2753 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2754 /// like ^(int x){ return x+1; }
2755 ///
2756 /// \verbatim
2757 /// block-literal:
2758 /// [clang] '^' block-args[opt] compound-statement
2759 /// [clang] '^' block-id compound-statement
2760 /// [clang] block-args:
2761 /// [clang] '(' parameter-list ')'
2762 /// \endverbatim
ParseBlockLiteralExpression()2763 ExprResult Parser::ParseBlockLiteralExpression() {
2764 assert(Tok.is(tok::caret) && "block literal starts with ^");
2765 SourceLocation CaretLoc = ConsumeToken();
2766
2767 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2768 "block literal parsing");
2769
2770 // Enter a scope to hold everything within the block. This includes the
2771 // argument decls, decls within the compound expression, etc. This also
2772 // allows determining whether a variable reference inside the block is
2773 // within or outside of the block.
2774 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2775 Scope::DeclScope);
2776
2777 // Inform sema that we are starting a block.
2778 Actions.ActOnBlockStart(CaretLoc, getCurScope());
2779
2780 // Parse the return type if present.
2781 DeclSpec DS(AttrFactory);
2782 Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2783 // FIXME: Since the return type isn't actually parsed, it can't be used to
2784 // fill ParamInfo with an initial valid range, so do it manually.
2785 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2786
2787 // If this block has arguments, parse them. There is no ambiguity here with
2788 // the expression case, because the expression case requires a parameter list.
2789 if (Tok.is(tok::l_paren)) {
2790 ParseParenDeclarator(ParamInfo);
2791 // Parse the pieces after the identifier as if we had "int(...)".
2792 // SetIdentifier sets the source range end, but in this case we're past
2793 // that location.
2794 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2795 ParamInfo.SetIdentifier(nullptr, CaretLoc);
2796 ParamInfo.SetRangeEnd(Tmp);
2797 if (ParamInfo.isInvalidType()) {
2798 // If there was an error parsing the arguments, they may have
2799 // tried to use ^(x+y) which requires an argument list. Just
2800 // skip the whole block literal.
2801 Actions.ActOnBlockError(CaretLoc, getCurScope());
2802 return ExprError();
2803 }
2804
2805 MaybeParseGNUAttributes(ParamInfo);
2806
2807 // Inform sema that we are starting a block.
2808 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2809 } else if (!Tok.is(tok::l_brace)) {
2810 ParseBlockId(CaretLoc);
2811 } else {
2812 // Otherwise, pretend we saw (void).
2813 ParsedAttributes attrs(AttrFactory);
2814 SourceLocation NoLoc;
2815 ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2816 /*IsAmbiguous=*/false,
2817 /*RParenLoc=*/NoLoc,
2818 /*ArgInfo=*/nullptr,
2819 /*NumArgs=*/0,
2820 /*EllipsisLoc=*/NoLoc,
2821 /*RParenLoc=*/NoLoc,
2822 /*TypeQuals=*/0,
2823 /*RefQualifierIsLvalueRef=*/true,
2824 /*RefQualifierLoc=*/NoLoc,
2825 /*ConstQualifierLoc=*/NoLoc,
2826 /*VolatileQualifierLoc=*/NoLoc,
2827 /*RestrictQualifierLoc=*/NoLoc,
2828 /*MutableLoc=*/NoLoc,
2829 EST_None,
2830 /*ESpecRange=*/SourceRange(),
2831 /*Exceptions=*/nullptr,
2832 /*ExceptionRanges=*/nullptr,
2833 /*NumExceptions=*/0,
2834 /*NoexceptExpr=*/nullptr,
2835 /*ExceptionSpecTokens=*/nullptr,
2836 CaretLoc, CaretLoc,
2837 ParamInfo),
2838 attrs, CaretLoc);
2839
2840 MaybeParseGNUAttributes(ParamInfo);
2841
2842 // Inform sema that we are starting a block.
2843 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2844 }
2845
2846
2847 ExprResult Result(true);
2848 if (!Tok.is(tok::l_brace)) {
2849 // Saw something like: ^expr
2850 Diag(Tok, diag::err_expected_expression);
2851 Actions.ActOnBlockError(CaretLoc, getCurScope());
2852 return ExprError();
2853 }
2854
2855 StmtResult Stmt(ParseCompoundStatementBody());
2856 BlockScope.Exit();
2857 if (!Stmt.isInvalid())
2858 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
2859 else
2860 Actions.ActOnBlockError(CaretLoc, getCurScope());
2861 return Result;
2862 }
2863
2864 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2865 ///
2866 /// '__objc_yes'
2867 /// '__objc_no'
ParseObjCBoolLiteral()2868 ExprResult Parser::ParseObjCBoolLiteral() {
2869 tok::TokenKind Kind = Tok.getKind();
2870 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2871 }
2872