1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/Scope.h"
26 #include "clang/Sema/ScopeInfo.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "TypeLocBuilder.h"
30
31 using namespace clang;
32
33 /// Check whether the given method, which must be in the 'init'
34 /// family, is a valid member of that family.
35 ///
36 /// \param receiverTypeIfCall - if null, check this as if declaring it;
37 /// if non-null, check this as if making a call to it with the given
38 /// receiver type
39 ///
40 /// \return true to indicate that there was an error and appropriate
41 /// actions were taken
checkInitMethod(ObjCMethodDecl * method,QualType receiverTypeIfCall)42 bool Sema::checkInitMethod(ObjCMethodDecl *method,
43 QualType receiverTypeIfCall) {
44 if (method->isInvalidDecl()) return true;
45
46 // This castAs is safe: methods that don't return an object
47 // pointer won't be inferred as inits and will reject an explicit
48 // objc_method_family(init).
49
50 // We ignore protocols here. Should we? What about Class?
51
52 const ObjCObjectType *result =
53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55 if (result->isObjCId()) {
56 return false;
57 } else if (result->isObjCClass()) {
58 // fall through: always an error
59 } else {
60 ObjCInterfaceDecl *resultClass = result->getInterface();
61 assert(resultClass && "unexpected object type!");
62
63 // It's okay for the result type to still be a forward declaration
64 // if we're checking an interface declaration.
65 if (!resultClass->hasDefinition()) {
66 if (receiverTypeIfCall.isNull() &&
67 !isa<ObjCImplementationDecl>(method->getDeclContext()))
68 return false;
69
70 // Otherwise, we try to compare class types.
71 } else {
72 // If this method was declared in a protocol, we can't check
73 // anything unless we have a receiver type that's an interface.
74 const ObjCInterfaceDecl *receiverClass = nullptr;
75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76 if (receiverTypeIfCall.isNull())
77 return false;
78
79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80 ->getInterfaceDecl();
81
82 // This can be null for calls to e.g. id<Foo>.
83 if (!receiverClass) return false;
84 } else {
85 receiverClass = method->getClassInterface();
86 assert(receiverClass && "method not associated with a class!");
87 }
88
89 // If either class is a subclass of the other, it's fine.
90 if (receiverClass->isSuperClassOf(resultClass) ||
91 resultClass->isSuperClassOf(receiverClass))
92 return false;
93 }
94 }
95
96 SourceLocation loc = method->getLocation();
97
98 // If we're in a system header, and this is not a call, just make
99 // the method unusable.
100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103 return true;
104 }
105
106 // Otherwise, it's an error.
107 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108 method->setInvalidDecl();
109 return true;
110 }
111
CheckObjCMethodOverride(ObjCMethodDecl * NewMethod,const ObjCMethodDecl * Overridden)112 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
113 const ObjCMethodDecl *Overridden) {
114 if (Overridden->hasRelatedResultType() &&
115 !NewMethod->hasRelatedResultType()) {
116 // This can only happen when the method follows a naming convention that
117 // implies a related result type, and the original (overridden) method has
118 // a suitable return type, but the new (overriding) method does not have
119 // a suitable return type.
120 QualType ResultType = NewMethod->getReturnType();
121 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
122
123 // Figure out which class this method is part of, if any.
124 ObjCInterfaceDecl *CurrentClass
125 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
126 if (!CurrentClass) {
127 DeclContext *DC = NewMethod->getDeclContext();
128 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
129 CurrentClass = Cat->getClassInterface();
130 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
131 CurrentClass = Impl->getClassInterface();
132 else if (ObjCCategoryImplDecl *CatImpl
133 = dyn_cast<ObjCCategoryImplDecl>(DC))
134 CurrentClass = CatImpl->getClassInterface();
135 }
136
137 if (CurrentClass) {
138 Diag(NewMethod->getLocation(),
139 diag::warn_related_result_type_compatibility_class)
140 << Context.getObjCInterfaceType(CurrentClass)
141 << ResultType
142 << ResultTypeRange;
143 } else {
144 Diag(NewMethod->getLocation(),
145 diag::warn_related_result_type_compatibility_protocol)
146 << ResultType
147 << ResultTypeRange;
148 }
149
150 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
151 Diag(Overridden->getLocation(),
152 diag::note_related_result_type_family)
153 << /*overridden method*/ 0
154 << Family;
155 else
156 Diag(Overridden->getLocation(),
157 diag::note_related_result_type_overridden);
158 }
159 if (getLangOpts().ObjCAutoRefCount) {
160 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
161 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
162 Diag(NewMethod->getLocation(),
163 diag::err_nsreturns_retained_attribute_mismatch) << 1;
164 Diag(Overridden->getLocation(), diag::note_previous_decl)
165 << "method";
166 }
167 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
168 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
169 Diag(NewMethod->getLocation(),
170 diag::err_nsreturns_retained_attribute_mismatch) << 0;
171 Diag(Overridden->getLocation(), diag::note_previous_decl)
172 << "method";
173 }
174 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
175 oe = Overridden->param_end();
176 for (ObjCMethodDecl::param_iterator
177 ni = NewMethod->param_begin(), ne = NewMethod->param_end();
178 ni != ne && oi != oe; ++ni, ++oi) {
179 const ParmVarDecl *oldDecl = (*oi);
180 ParmVarDecl *newDecl = (*ni);
181 if (newDecl->hasAttr<NSConsumedAttr>() !=
182 oldDecl->hasAttr<NSConsumedAttr>()) {
183 Diag(newDecl->getLocation(),
184 diag::err_nsconsumed_attribute_mismatch);
185 Diag(oldDecl->getLocation(), diag::note_previous_decl)
186 << "parameter";
187 }
188 }
189 }
190 }
191
192 /// \brief Check a method declaration for compatibility with the Objective-C
193 /// ARC conventions.
CheckARCMethodDecl(ObjCMethodDecl * method)194 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
195 ObjCMethodFamily family = method->getMethodFamily();
196 switch (family) {
197 case OMF_None:
198 case OMF_finalize:
199 case OMF_retain:
200 case OMF_release:
201 case OMF_autorelease:
202 case OMF_retainCount:
203 case OMF_self:
204 case OMF_initialize:
205 case OMF_performSelector:
206 return false;
207
208 case OMF_dealloc:
209 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
210 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
211 if (ResultTypeRange.isInvalid())
212 Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
213 << method->getReturnType()
214 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
215 else
216 Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217 << method->getReturnType()
218 << FixItHint::CreateReplacement(ResultTypeRange, "void");
219 return true;
220 }
221 return false;
222
223 case OMF_init:
224 // If the method doesn't obey the init rules, don't bother annotating it.
225 if (checkInitMethod(method, QualType()))
226 return true;
227
228 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
229
230 // Don't add a second copy of this attribute, but otherwise don't
231 // let it be suppressed.
232 if (method->hasAttr<NSReturnsRetainedAttr>())
233 return false;
234 break;
235
236 case OMF_alloc:
237 case OMF_copy:
238 case OMF_mutableCopy:
239 case OMF_new:
240 if (method->hasAttr<NSReturnsRetainedAttr>() ||
241 method->hasAttr<NSReturnsNotRetainedAttr>() ||
242 method->hasAttr<NSReturnsAutoreleasedAttr>())
243 return false;
244 break;
245 }
246
247 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
248 return false;
249 }
250
DiagnoseObjCImplementedDeprecations(Sema & S,NamedDecl * ND,SourceLocation ImplLoc,int select)251 static void DiagnoseObjCImplementedDeprecations(Sema &S,
252 NamedDecl *ND,
253 SourceLocation ImplLoc,
254 int select) {
255 if (ND && ND->isDeprecated()) {
256 S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
257 if (select == 0)
258 S.Diag(ND->getLocation(), diag::note_method_declared_at)
259 << ND->getDeclName();
260 else
261 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
262 }
263 }
264
265 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
266 /// pool.
AddAnyMethodToGlobalPool(Decl * D)267 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
268 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
269
270 // If we don't have a valid method decl, simply return.
271 if (!MDecl)
272 return;
273 if (MDecl->isInstanceMethod())
274 AddInstanceMethodToGlobalPool(MDecl, true);
275 else
276 AddFactoryMethodToGlobalPool(MDecl, true);
277 }
278
279 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
280 /// has explicit ownership attribute; false otherwise.
281 static bool
HasExplicitOwnershipAttr(Sema & S,ParmVarDecl * Param)282 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
283 QualType T = Param->getType();
284
285 if (const PointerType *PT = T->getAs<PointerType>()) {
286 T = PT->getPointeeType();
287 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
288 T = RT->getPointeeType();
289 } else {
290 return true;
291 }
292
293 // If we have a lifetime qualifier, but it's local, we must have
294 // inferred it. So, it is implicit.
295 return !T.getLocalQualifiers().hasObjCLifetime();
296 }
297
298 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
299 /// and user declared, in the method definition's AST.
ActOnStartOfObjCMethodDef(Scope * FnBodyScope,Decl * D)300 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
301 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
302 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
303
304 // If we don't have a valid method decl, simply return.
305 if (!MDecl)
306 return;
307
308 // Allow all of Sema to see that we are entering a method definition.
309 PushDeclContext(FnBodyScope, MDecl);
310 PushFunctionScope();
311
312 // Create Decl objects for each parameter, entrring them in the scope for
313 // binding to their use.
314
315 // Insert the invisible arguments, self and _cmd!
316 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
317
318 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
319 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
320
321 // The ObjC parser requires parameter names so there's no need to check.
322 CheckParmsForFunctionDef(MDecl->parameters(),
323 /*CheckParameterNames=*/false);
324
325 // Introduce all of the other parameters into this scope.
326 for (auto *Param : MDecl->parameters()) {
327 if (!Param->isInvalidDecl() &&
328 getLangOpts().ObjCAutoRefCount &&
329 !HasExplicitOwnershipAttr(*this, Param))
330 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
331 Param->getType();
332
333 if (Param->getIdentifier())
334 PushOnScopeChains(Param, FnBodyScope);
335 }
336
337 // In ARC, disallow definition of retain/release/autorelease/retainCount
338 if (getLangOpts().ObjCAutoRefCount) {
339 switch (MDecl->getMethodFamily()) {
340 case OMF_retain:
341 case OMF_retainCount:
342 case OMF_release:
343 case OMF_autorelease:
344 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
345 << 0 << MDecl->getSelector();
346 break;
347
348 case OMF_None:
349 case OMF_dealloc:
350 case OMF_finalize:
351 case OMF_alloc:
352 case OMF_init:
353 case OMF_mutableCopy:
354 case OMF_copy:
355 case OMF_new:
356 case OMF_self:
357 case OMF_initialize:
358 case OMF_performSelector:
359 break;
360 }
361 }
362
363 // Warn on deprecated methods under -Wdeprecated-implementations,
364 // and prepare for warning on missing super calls.
365 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
366 ObjCMethodDecl *IMD =
367 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
368
369 if (IMD) {
370 ObjCImplDecl *ImplDeclOfMethodDef =
371 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
372 ObjCContainerDecl *ContDeclOfMethodDecl =
373 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
374 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
375 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
376 ImplDeclOfMethodDecl = OID->getImplementation();
377 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
378 if (CD->IsClassExtension()) {
379 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
380 ImplDeclOfMethodDecl = OID->getImplementation();
381 } else
382 ImplDeclOfMethodDecl = CD->getImplementation();
383 }
384 // No need to issue deprecated warning if deprecated mehod in class/category
385 // is being implemented in its own implementation (no overriding is involved).
386 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
387 DiagnoseObjCImplementedDeprecations(*this,
388 dyn_cast<NamedDecl>(IMD),
389 MDecl->getLocation(), 0);
390 }
391
392 if (MDecl->getMethodFamily() == OMF_init) {
393 if (MDecl->isDesignatedInitializerForTheInterface()) {
394 getCurFunction()->ObjCIsDesignatedInit = true;
395 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
396 IC->getSuperClass() != nullptr;
397 } else if (IC->hasDesignatedInitializers()) {
398 getCurFunction()->ObjCIsSecondaryInit = true;
399 getCurFunction()->ObjCWarnForNoInitDelegation = true;
400 }
401 }
402
403 // If this is "dealloc" or "finalize", set some bit here.
404 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
405 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
406 // Only do this if the current class actually has a superclass.
407 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
408 ObjCMethodFamily Family = MDecl->getMethodFamily();
409 if (Family == OMF_dealloc) {
410 if (!(getLangOpts().ObjCAutoRefCount ||
411 getLangOpts().getGC() == LangOptions::GCOnly))
412 getCurFunction()->ObjCShouldCallSuper = true;
413
414 } else if (Family == OMF_finalize) {
415 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
416 getCurFunction()->ObjCShouldCallSuper = true;
417
418 } else {
419 const ObjCMethodDecl *SuperMethod =
420 SuperClass->lookupMethod(MDecl->getSelector(),
421 MDecl->isInstanceMethod());
422 getCurFunction()->ObjCShouldCallSuper =
423 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
424 }
425 }
426 }
427 }
428
429 namespace {
430
431 // Callback to only accept typo corrections that are Objective-C classes.
432 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
433 // function will reject corrections to that class.
434 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
435 public:
ObjCInterfaceValidatorCCC()436 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
ObjCInterfaceValidatorCCC(ObjCInterfaceDecl * IDecl)437 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
438 : CurrentIDecl(IDecl) {}
439
ValidateCandidate(const TypoCorrection & candidate)440 bool ValidateCandidate(const TypoCorrection &candidate) override {
441 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
442 return ID && !declaresSameEntity(ID, CurrentIDecl);
443 }
444
445 private:
446 ObjCInterfaceDecl *CurrentIDecl;
447 };
448
449 } // end anonymous namespace
450
diagnoseUseOfProtocols(Sema & TheSema,ObjCContainerDecl * CD,ObjCProtocolDecl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs)451 static void diagnoseUseOfProtocols(Sema &TheSema,
452 ObjCContainerDecl *CD,
453 ObjCProtocolDecl *const *ProtoRefs,
454 unsigned NumProtoRefs,
455 const SourceLocation *ProtoLocs) {
456 assert(ProtoRefs);
457 // Diagnose availability in the context of the ObjC container.
458 Sema::ContextRAII SavedContext(TheSema, CD);
459 for (unsigned i = 0; i < NumProtoRefs; ++i) {
460 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i]);
461 }
462 }
463
464 void Sema::
ActOnSuperClassOfClassInterface(Scope * S,SourceLocation AtInterfaceLoc,ObjCInterfaceDecl * IDecl,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperName,SourceLocation SuperLoc,ArrayRef<ParsedType> SuperTypeArgs,SourceRange SuperTypeArgsRange)465 ActOnSuperClassOfClassInterface(Scope *S,
466 SourceLocation AtInterfaceLoc,
467 ObjCInterfaceDecl *IDecl,
468 IdentifierInfo *ClassName,
469 SourceLocation ClassLoc,
470 IdentifierInfo *SuperName,
471 SourceLocation SuperLoc,
472 ArrayRef<ParsedType> SuperTypeArgs,
473 SourceRange SuperTypeArgsRange) {
474 // Check if a different kind of symbol declared in this scope.
475 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
476 LookupOrdinaryName);
477
478 if (!PrevDecl) {
479 // Try to correct for a typo in the superclass name without correcting
480 // to the class we're defining.
481 if (TypoCorrection Corrected = CorrectTypo(
482 DeclarationNameInfo(SuperName, SuperLoc),
483 LookupOrdinaryName, TUScope,
484 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
485 CTK_ErrorRecovery)) {
486 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
487 << SuperName << ClassName);
488 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
489 }
490 }
491
492 if (declaresSameEntity(PrevDecl, IDecl)) {
493 Diag(SuperLoc, diag::err_recursive_superclass)
494 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
495 IDecl->setEndOfDefinitionLoc(ClassLoc);
496 } else {
497 ObjCInterfaceDecl *SuperClassDecl =
498 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
499 QualType SuperClassType;
500
501 // Diagnose classes that inherit from deprecated classes.
502 if (SuperClassDecl) {
503 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
504 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
505 }
506
507 if (PrevDecl && !SuperClassDecl) {
508 // The previous declaration was not a class decl. Check if we have a
509 // typedef. If we do, get the underlying class type.
510 if (const TypedefNameDecl *TDecl =
511 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
512 QualType T = TDecl->getUnderlyingType();
513 if (T->isObjCObjectType()) {
514 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
515 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
516 SuperClassType = Context.getTypeDeclType(TDecl);
517
518 // This handles the following case:
519 // @interface NewI @end
520 // typedef NewI DeprI __attribute__((deprecated("blah")))
521 // @interface SI : DeprI /* warn here */ @end
522 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
523 }
524 }
525 }
526
527 // This handles the following case:
528 //
529 // typedef int SuperClass;
530 // @interface MyClass : SuperClass {} @end
531 //
532 if (!SuperClassDecl) {
533 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
534 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
535 }
536 }
537
538 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
539 if (!SuperClassDecl)
540 Diag(SuperLoc, diag::err_undef_superclass)
541 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
542 else if (RequireCompleteType(SuperLoc,
543 SuperClassType,
544 diag::err_forward_superclass,
545 SuperClassDecl->getDeclName(),
546 ClassName,
547 SourceRange(AtInterfaceLoc, ClassLoc))) {
548 SuperClassDecl = nullptr;
549 SuperClassType = QualType();
550 }
551 }
552
553 if (SuperClassType.isNull()) {
554 assert(!SuperClassDecl && "Failed to set SuperClassType?");
555 return;
556 }
557
558 // Handle type arguments on the superclass.
559 TypeSourceInfo *SuperClassTInfo = nullptr;
560 if (!SuperTypeArgs.empty()) {
561 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
562 S,
563 SuperLoc,
564 CreateParsedType(SuperClassType,
565 nullptr),
566 SuperTypeArgsRange.getBegin(),
567 SuperTypeArgs,
568 SuperTypeArgsRange.getEnd(),
569 SourceLocation(),
570 { },
571 { },
572 SourceLocation());
573 if (!fullSuperClassType.isUsable())
574 return;
575
576 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
577 &SuperClassTInfo);
578 }
579
580 if (!SuperClassTInfo) {
581 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
582 SuperLoc);
583 }
584
585 IDecl->setSuperClass(SuperClassTInfo);
586 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
587 }
588 }
589
actOnObjCTypeParam(Scope * S,ObjCTypeParamVariance variance,SourceLocation varianceLoc,unsigned index,IdentifierInfo * paramName,SourceLocation paramLoc,SourceLocation colonLoc,ParsedType parsedTypeBound)590 DeclResult Sema::actOnObjCTypeParam(Scope *S,
591 ObjCTypeParamVariance variance,
592 SourceLocation varianceLoc,
593 unsigned index,
594 IdentifierInfo *paramName,
595 SourceLocation paramLoc,
596 SourceLocation colonLoc,
597 ParsedType parsedTypeBound) {
598 // If there was an explicitly-provided type bound, check it.
599 TypeSourceInfo *typeBoundInfo = nullptr;
600 if (parsedTypeBound) {
601 // The type bound can be any Objective-C pointer type.
602 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
603 if (typeBound->isObjCObjectPointerType()) {
604 // okay
605 } else if (typeBound->isObjCObjectType()) {
606 // The user forgot the * on an Objective-C pointer type, e.g.,
607 // "T : NSView".
608 SourceLocation starLoc = getLocForEndOfToken(
609 typeBoundInfo->getTypeLoc().getEndLoc());
610 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
611 diag::err_objc_type_param_bound_missing_pointer)
612 << typeBound << paramName
613 << FixItHint::CreateInsertion(starLoc, " *");
614
615 // Create a new type location builder so we can update the type
616 // location information we have.
617 TypeLocBuilder builder;
618 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
619
620 // Create the Objective-C pointer type.
621 typeBound = Context.getObjCObjectPointerType(typeBound);
622 ObjCObjectPointerTypeLoc newT
623 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
624 newT.setStarLoc(starLoc);
625
626 // Form the new type source information.
627 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
628 } else {
629 // Not a valid type bound.
630 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
631 diag::err_objc_type_param_bound_nonobject)
632 << typeBound << paramName;
633
634 // Forget the bound; we'll default to id later.
635 typeBoundInfo = nullptr;
636 }
637
638 // Type bounds cannot have qualifiers (even indirectly) or explicit
639 // nullability.
640 if (typeBoundInfo) {
641 QualType typeBound = typeBoundInfo->getType();
642 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
643 if (qual || typeBound.hasQualifiers()) {
644 bool diagnosed = false;
645 SourceRange rangeToRemove;
646 if (qual) {
647 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
648 rangeToRemove = attr.getLocalSourceRange();
649 if (attr.getTypePtr()->getImmediateNullability()) {
650 Diag(attr.getLocStart(),
651 diag::err_objc_type_param_bound_explicit_nullability)
652 << paramName << typeBound
653 << FixItHint::CreateRemoval(rangeToRemove);
654 diagnosed = true;
655 }
656 }
657 }
658
659 if (!diagnosed) {
660 Diag(qual ? qual.getLocStart()
661 : typeBoundInfo->getTypeLoc().getLocStart(),
662 diag::err_objc_type_param_bound_qualified)
663 << paramName << typeBound << typeBound.getQualifiers().getAsString()
664 << FixItHint::CreateRemoval(rangeToRemove);
665 }
666
667 // If the type bound has qualifiers other than CVR, we need to strip
668 // them or we'll probably assert later when trying to apply new
669 // qualifiers.
670 Qualifiers quals = typeBound.getQualifiers();
671 quals.removeCVRQualifiers();
672 if (!quals.empty()) {
673 typeBoundInfo =
674 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
675 }
676 }
677 }
678 }
679
680 // If there was no explicit type bound (or we removed it due to an error),
681 // use 'id' instead.
682 if (!typeBoundInfo) {
683 colonLoc = SourceLocation();
684 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
685 }
686
687 // Create the type parameter.
688 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
689 index, paramLoc, paramName, colonLoc,
690 typeBoundInfo);
691 }
692
actOnObjCTypeParamList(Scope * S,SourceLocation lAngleLoc,ArrayRef<Decl * > typeParamsIn,SourceLocation rAngleLoc)693 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
694 SourceLocation lAngleLoc,
695 ArrayRef<Decl *> typeParamsIn,
696 SourceLocation rAngleLoc) {
697 // We know that the array only contains Objective-C type parameters.
698 ArrayRef<ObjCTypeParamDecl *>
699 typeParams(
700 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
701 typeParamsIn.size());
702
703 // Diagnose redeclarations of type parameters.
704 // We do this now because Objective-C type parameters aren't pushed into
705 // scope until later (after the instance variable block), but we want the
706 // diagnostics to occur right after we parse the type parameter list.
707 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
708 for (auto typeParam : typeParams) {
709 auto known = knownParams.find(typeParam->getIdentifier());
710 if (known != knownParams.end()) {
711 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
712 << typeParam->getIdentifier()
713 << SourceRange(known->second->getLocation());
714
715 typeParam->setInvalidDecl();
716 } else {
717 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
718
719 // Push the type parameter into scope.
720 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
721 }
722 }
723
724 // Create the parameter list.
725 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
726 }
727
popObjCTypeParamList(Scope * S,ObjCTypeParamList * typeParamList)728 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
729 for (auto typeParam : *typeParamList) {
730 if (!typeParam->isInvalidDecl()) {
731 S->RemoveDecl(typeParam);
732 IdResolver.RemoveDecl(typeParam);
733 }
734 }
735 }
736
737 namespace {
738 /// The context in which an Objective-C type parameter list occurs, for use
739 /// in diagnostics.
740 enum class TypeParamListContext {
741 ForwardDeclaration,
742 Definition,
743 Category,
744 Extension
745 };
746 } // end anonymous namespace
747
748 /// Check consistency between two Objective-C type parameter lists, e.g.,
749 /// between a category/extension and an \@interface or between an \@class and an
750 /// \@interface.
checkTypeParamListConsistency(Sema & S,ObjCTypeParamList * prevTypeParams,ObjCTypeParamList * newTypeParams,TypeParamListContext newContext)751 static bool checkTypeParamListConsistency(Sema &S,
752 ObjCTypeParamList *prevTypeParams,
753 ObjCTypeParamList *newTypeParams,
754 TypeParamListContext newContext) {
755 // If the sizes don't match, complain about that.
756 if (prevTypeParams->size() != newTypeParams->size()) {
757 SourceLocation diagLoc;
758 if (newTypeParams->size() > prevTypeParams->size()) {
759 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
760 } else {
761 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
762 }
763
764 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
765 << static_cast<unsigned>(newContext)
766 << (newTypeParams->size() > prevTypeParams->size())
767 << prevTypeParams->size()
768 << newTypeParams->size();
769
770 return true;
771 }
772
773 // Match up the type parameters.
774 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
775 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
776 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
777
778 // Check for consistency of the variance.
779 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
780 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
781 newContext != TypeParamListContext::Definition) {
782 // When the new type parameter is invariant and is not part
783 // of the definition, just propagate the variance.
784 newTypeParam->setVariance(prevTypeParam->getVariance());
785 } else if (prevTypeParam->getVariance()
786 == ObjCTypeParamVariance::Invariant &&
787 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
788 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
789 ->getDefinition() == prevTypeParam->getDeclContext())) {
790 // When the old parameter is invariant and was not part of the
791 // definition, just ignore the difference because it doesn't
792 // matter.
793 } else {
794 {
795 // Diagnose the conflict and update the second declaration.
796 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
797 if (diagLoc.isInvalid())
798 diagLoc = newTypeParam->getLocStart();
799
800 auto diag = S.Diag(diagLoc,
801 diag::err_objc_type_param_variance_conflict)
802 << static_cast<unsigned>(newTypeParam->getVariance())
803 << newTypeParam->getDeclName()
804 << static_cast<unsigned>(prevTypeParam->getVariance())
805 << prevTypeParam->getDeclName();
806 switch (prevTypeParam->getVariance()) {
807 case ObjCTypeParamVariance::Invariant:
808 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
809 break;
810
811 case ObjCTypeParamVariance::Covariant:
812 case ObjCTypeParamVariance::Contravariant: {
813 StringRef newVarianceStr
814 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
815 ? "__covariant"
816 : "__contravariant";
817 if (newTypeParam->getVariance()
818 == ObjCTypeParamVariance::Invariant) {
819 diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
820 (newVarianceStr + " ").str());
821 } else {
822 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
823 newVarianceStr);
824 }
825 }
826 }
827 }
828
829 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
830 << prevTypeParam->getDeclName();
831
832 // Override the variance.
833 newTypeParam->setVariance(prevTypeParam->getVariance());
834 }
835 }
836
837 // If the bound types match, there's nothing to do.
838 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
839 newTypeParam->getUnderlyingType()))
840 continue;
841
842 // If the new type parameter's bound was explicit, complain about it being
843 // different from the original.
844 if (newTypeParam->hasExplicitBound()) {
845 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
846 ->getTypeLoc().getSourceRange();
847 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
848 << newTypeParam->getUnderlyingType()
849 << newTypeParam->getDeclName()
850 << prevTypeParam->hasExplicitBound()
851 << prevTypeParam->getUnderlyingType()
852 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
853 << prevTypeParam->getDeclName()
854 << FixItHint::CreateReplacement(
855 newBoundRange,
856 prevTypeParam->getUnderlyingType().getAsString(
857 S.Context.getPrintingPolicy()));
858
859 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
860 << prevTypeParam->getDeclName();
861
862 // Override the new type parameter's bound type with the previous type,
863 // so that it's consistent.
864 newTypeParam->setTypeSourceInfo(
865 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
866 continue;
867 }
868
869 // The new type parameter got the implicit bound of 'id'. That's okay for
870 // categories and extensions (overwrite it later), but not for forward
871 // declarations and @interfaces, because those must be standalone.
872 if (newContext == TypeParamListContext::ForwardDeclaration ||
873 newContext == TypeParamListContext::Definition) {
874 // Diagnose this problem for forward declarations and definitions.
875 SourceLocation insertionLoc
876 = S.getLocForEndOfToken(newTypeParam->getLocation());
877 std::string newCode
878 = " : " + prevTypeParam->getUnderlyingType().getAsString(
879 S.Context.getPrintingPolicy());
880 S.Diag(newTypeParam->getLocation(),
881 diag::err_objc_type_param_bound_missing)
882 << prevTypeParam->getUnderlyingType()
883 << newTypeParam->getDeclName()
884 << (newContext == TypeParamListContext::ForwardDeclaration)
885 << FixItHint::CreateInsertion(insertionLoc, newCode);
886
887 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
888 << prevTypeParam->getDeclName();
889 }
890
891 // Update the new type parameter's bound to match the previous one.
892 newTypeParam->setTypeSourceInfo(
893 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
894 }
895
896 return false;
897 }
898
899 Decl *Sema::
ActOnStartClassInterface(Scope * S,SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,ObjCTypeParamList * typeParamList,IdentifierInfo * SuperName,SourceLocation SuperLoc,ArrayRef<ParsedType> SuperTypeArgs,SourceRange SuperTypeArgsRange,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)900 ActOnStartClassInterface(Scope *S, SourceLocation AtInterfaceLoc,
901 IdentifierInfo *ClassName, SourceLocation ClassLoc,
902 ObjCTypeParamList *typeParamList,
903 IdentifierInfo *SuperName, SourceLocation SuperLoc,
904 ArrayRef<ParsedType> SuperTypeArgs,
905 SourceRange SuperTypeArgsRange,
906 Decl * const *ProtoRefs, unsigned NumProtoRefs,
907 const SourceLocation *ProtoLocs,
908 SourceLocation EndProtoLoc, AttributeList *AttrList) {
909 assert(ClassName && "Missing class identifier");
910
911 // Check for another declaration kind with the same name.
912 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
913 LookupOrdinaryName, ForRedeclaration);
914
915 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
916 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
917 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
918 }
919
920 // Create a declaration to describe this @interface.
921 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
922
923 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
924 // A previous decl with a different name is because of
925 // @compatibility_alias, for example:
926 // \code
927 // @class NewImage;
928 // @compatibility_alias OldImage NewImage;
929 // \endcode
930 // A lookup for 'OldImage' will return the 'NewImage' decl.
931 //
932 // In such a case use the real declaration name, instead of the alias one,
933 // otherwise we will break IdentifierResolver and redecls-chain invariants.
934 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
935 // has been aliased.
936 ClassName = PrevIDecl->getIdentifier();
937 }
938
939 // If there was a forward declaration with type parameters, check
940 // for consistency.
941 if (PrevIDecl) {
942 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
943 if (typeParamList) {
944 // Both have type parameter lists; check for consistency.
945 if (checkTypeParamListConsistency(*this, prevTypeParamList,
946 typeParamList,
947 TypeParamListContext::Definition)) {
948 typeParamList = nullptr;
949 }
950 } else {
951 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
952 << ClassName;
953 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
954 << ClassName;
955
956 // Clone the type parameter list.
957 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
958 for (auto typeParam : *prevTypeParamList) {
959 clonedTypeParams.push_back(
960 ObjCTypeParamDecl::Create(
961 Context,
962 CurContext,
963 typeParam->getVariance(),
964 SourceLocation(),
965 typeParam->getIndex(),
966 SourceLocation(),
967 typeParam->getIdentifier(),
968 SourceLocation(),
969 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
970 }
971
972 typeParamList = ObjCTypeParamList::create(Context,
973 SourceLocation(),
974 clonedTypeParams,
975 SourceLocation());
976 }
977 }
978 }
979
980 ObjCInterfaceDecl *IDecl
981 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
982 typeParamList, PrevIDecl, ClassLoc);
983 if (PrevIDecl) {
984 // Class already seen. Was it a definition?
985 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
986 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
987 << PrevIDecl->getDeclName();
988 Diag(Def->getLocation(), diag::note_previous_definition);
989 IDecl->setInvalidDecl();
990 }
991 }
992
993 if (AttrList)
994 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
995 PushOnScopeChains(IDecl, TUScope);
996
997 // Start the definition of this class. If we're in a redefinition case, there
998 // may already be a definition, so we'll end up adding to it.
999 if (!IDecl->hasDefinition())
1000 IDecl->startDefinition();
1001
1002 if (SuperName) {
1003 // Diagnose availability in the context of the @interface.
1004 ContextRAII SavedContext(*this, IDecl);
1005
1006 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1007 ClassName, ClassLoc,
1008 SuperName, SuperLoc, SuperTypeArgs,
1009 SuperTypeArgsRange);
1010 } else { // we have a root class.
1011 IDecl->setEndOfDefinitionLoc(ClassLoc);
1012 }
1013
1014 // Check then save referenced protocols.
1015 if (NumProtoRefs) {
1016 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1017 NumProtoRefs, ProtoLocs);
1018 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1019 ProtoLocs, Context);
1020 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1021 }
1022
1023 CheckObjCDeclScope(IDecl);
1024 return ActOnObjCContainerStartDefinition(IDecl);
1025 }
1026
1027 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1028 /// typedef'ed use for a qualified super class and adds them to the list
1029 /// of the protocols.
ActOnTypedefedProtocols(SmallVectorImpl<Decl * > & ProtocolRefs,IdentifierInfo * SuperName,SourceLocation SuperLoc)1030 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1031 IdentifierInfo *SuperName,
1032 SourceLocation SuperLoc) {
1033 if (!SuperName)
1034 return;
1035 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1036 LookupOrdinaryName);
1037 if (!IDecl)
1038 return;
1039
1040 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1041 QualType T = TDecl->getUnderlyingType();
1042 if (T->isObjCObjectType())
1043 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
1044 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1045 }
1046 }
1047
1048 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1049 /// a \@compatibility_alias declaration. It sets up the alias relationships.
ActOnCompatibilityAlias(SourceLocation AtLoc,IdentifierInfo * AliasName,SourceLocation AliasLocation,IdentifierInfo * ClassName,SourceLocation ClassLocation)1050 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1051 IdentifierInfo *AliasName,
1052 SourceLocation AliasLocation,
1053 IdentifierInfo *ClassName,
1054 SourceLocation ClassLocation) {
1055 // Look for previous declaration of alias name
1056 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
1057 LookupOrdinaryName, ForRedeclaration);
1058 if (ADecl) {
1059 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1060 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1061 return nullptr;
1062 }
1063 // Check for class declaration
1064 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1065 LookupOrdinaryName, ForRedeclaration);
1066 if (const TypedefNameDecl *TDecl =
1067 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1068 QualType T = TDecl->getUnderlyingType();
1069 if (T->isObjCObjectType()) {
1070 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1071 ClassName = IDecl->getIdentifier();
1072 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1073 LookupOrdinaryName, ForRedeclaration);
1074 }
1075 }
1076 }
1077 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1078 if (!CDecl) {
1079 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1080 if (CDeclU)
1081 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1082 return nullptr;
1083 }
1084
1085 // Everything checked out, instantiate a new alias declaration AST.
1086 ObjCCompatibleAliasDecl *AliasDecl =
1087 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1088
1089 if (!CheckObjCDeclScope(AliasDecl))
1090 PushOnScopeChains(AliasDecl, TUScope);
1091
1092 return AliasDecl;
1093 }
1094
CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo * PName,SourceLocation & Ploc,SourceLocation PrevLoc,const ObjCList<ObjCProtocolDecl> & PList)1095 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1096 IdentifierInfo *PName,
1097 SourceLocation &Ploc, SourceLocation PrevLoc,
1098 const ObjCList<ObjCProtocolDecl> &PList) {
1099
1100 bool res = false;
1101 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1102 E = PList.end(); I != E; ++I) {
1103 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1104 Ploc)) {
1105 if (PDecl->getIdentifier() == PName) {
1106 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1107 Diag(PrevLoc, diag::note_previous_definition);
1108 res = true;
1109 }
1110
1111 if (!PDecl->hasDefinition())
1112 continue;
1113
1114 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1115 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1116 res = true;
1117 }
1118 }
1119 return res;
1120 }
1121
1122 Decl *
ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,IdentifierInfo * ProtocolName,SourceLocation ProtocolLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)1123 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
1124 IdentifierInfo *ProtocolName,
1125 SourceLocation ProtocolLoc,
1126 Decl * const *ProtoRefs,
1127 unsigned NumProtoRefs,
1128 const SourceLocation *ProtoLocs,
1129 SourceLocation EndProtoLoc,
1130 AttributeList *AttrList) {
1131 bool err = false;
1132 // FIXME: Deal with AttrList.
1133 assert(ProtocolName && "Missing protocol identifier");
1134 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1135 ForRedeclaration);
1136 ObjCProtocolDecl *PDecl = nullptr;
1137 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1138 // If we already have a definition, complain.
1139 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1140 Diag(Def->getLocation(), diag::note_previous_definition);
1141
1142 // Create a new protocol that is completely distinct from previous
1143 // declarations, and do not make this protocol available for name lookup.
1144 // That way, we'll end up completely ignoring the duplicate.
1145 // FIXME: Can we turn this into an error?
1146 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1147 ProtocolLoc, AtProtoInterfaceLoc,
1148 /*PrevDecl=*/nullptr);
1149 PDecl->startDefinition();
1150 } else {
1151 if (PrevDecl) {
1152 // Check for circular dependencies among protocol declarations. This can
1153 // only happen if this protocol was forward-declared.
1154 ObjCList<ObjCProtocolDecl> PList;
1155 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1156 err = CheckForwardProtocolDeclarationForCircularDependency(
1157 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1158 }
1159
1160 // Create the new declaration.
1161 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1162 ProtocolLoc, AtProtoInterfaceLoc,
1163 /*PrevDecl=*/PrevDecl);
1164
1165 PushOnScopeChains(PDecl, TUScope);
1166 PDecl->startDefinition();
1167 }
1168
1169 if (AttrList)
1170 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1171
1172 // Merge attributes from previous declarations.
1173 if (PrevDecl)
1174 mergeDeclAttributes(PDecl, PrevDecl);
1175
1176 if (!err && NumProtoRefs ) {
1177 /// Check then save referenced protocols.
1178 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1179 NumProtoRefs, ProtoLocs);
1180 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1181 ProtoLocs, Context);
1182 }
1183
1184 CheckObjCDeclScope(PDecl);
1185 return ActOnObjCContainerStartDefinition(PDecl);
1186 }
1187
NestedProtocolHasNoDefinition(ObjCProtocolDecl * PDecl,ObjCProtocolDecl * & UndefinedProtocol)1188 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1189 ObjCProtocolDecl *&UndefinedProtocol) {
1190 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1191 UndefinedProtocol = PDecl;
1192 return true;
1193 }
1194
1195 for (auto *PI : PDecl->protocols())
1196 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1197 UndefinedProtocol = PI;
1198 return true;
1199 }
1200 return false;
1201 }
1202
1203 /// FindProtocolDeclaration - This routine looks up protocols and
1204 /// issues an error if they are not declared. It returns list of
1205 /// protocol declarations in its 'Protocols' argument.
1206 void
FindProtocolDeclaration(bool WarnOnDeclarations,bool ForObjCContainer,ArrayRef<IdentifierLocPair> ProtocolId,SmallVectorImpl<Decl * > & Protocols)1207 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1208 ArrayRef<IdentifierLocPair> ProtocolId,
1209 SmallVectorImpl<Decl *> &Protocols) {
1210 for (const IdentifierLocPair &Pair : ProtocolId) {
1211 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1212 if (!PDecl) {
1213 TypoCorrection Corrected = CorrectTypo(
1214 DeclarationNameInfo(Pair.first, Pair.second),
1215 LookupObjCProtocolName, TUScope, nullptr,
1216 llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1217 CTK_ErrorRecovery);
1218 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1219 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1220 << Pair.first);
1221 }
1222
1223 if (!PDecl) {
1224 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1225 continue;
1226 }
1227 // If this is a forward protocol declaration, get its definition.
1228 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1229 PDecl = PDecl->getDefinition();
1230
1231 // For an objc container, delay protocol reference checking until after we
1232 // can set the objc decl as the availability context, otherwise check now.
1233 if (!ForObjCContainer) {
1234 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1235 }
1236
1237 // If this is a forward declaration and we are supposed to warn in this
1238 // case, do it.
1239 // FIXME: Recover nicely in the hidden case.
1240 ObjCProtocolDecl *UndefinedProtocol;
1241
1242 if (WarnOnDeclarations &&
1243 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1244 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1245 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1246 << UndefinedProtocol;
1247 }
1248 Protocols.push_back(PDecl);
1249 }
1250 }
1251
1252 namespace {
1253 // Callback to only accept typo corrections that are either
1254 // Objective-C protocols or valid Objective-C type arguments.
1255 class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1256 ASTContext &Context;
1257 Sema::LookupNameKind LookupKind;
1258 public:
ObjCTypeArgOrProtocolValidatorCCC(ASTContext & context,Sema::LookupNameKind lookupKind)1259 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1260 Sema::LookupNameKind lookupKind)
1261 : Context(context), LookupKind(lookupKind) { }
1262
ValidateCandidate(const TypoCorrection & candidate)1263 bool ValidateCandidate(const TypoCorrection &candidate) override {
1264 // If we're allowed to find protocols and we have a protocol, accept it.
1265 if (LookupKind != Sema::LookupOrdinaryName) {
1266 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1267 return true;
1268 }
1269
1270 // If we're allowed to find type names and we have one, accept it.
1271 if (LookupKind != Sema::LookupObjCProtocolName) {
1272 // If we have a type declaration, we might accept this result.
1273 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1274 // If we found a tag declaration outside of C++, skip it. This
1275 // can happy because we look for any name when there is no
1276 // bias to protocol or type names.
1277 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1278 return false;
1279
1280 // Make sure the type is something we would accept as a type
1281 // argument.
1282 auto type = Context.getTypeDeclType(typeDecl);
1283 if (type->isObjCObjectPointerType() ||
1284 type->isBlockPointerType() ||
1285 type->isDependentType() ||
1286 type->isObjCObjectType())
1287 return true;
1288
1289 return false;
1290 }
1291
1292 // If we have an Objective-C class type, accept it; there will
1293 // be another fix to add the '*'.
1294 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1295 return true;
1296
1297 return false;
1298 }
1299
1300 return false;
1301 }
1302 };
1303 } // end anonymous namespace
1304
DiagnoseTypeArgsAndProtocols(IdentifierInfo * ProtocolId,SourceLocation ProtocolLoc,IdentifierInfo * TypeArgId,SourceLocation TypeArgLoc,bool SelectProtocolFirst)1305 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1306 SourceLocation ProtocolLoc,
1307 IdentifierInfo *TypeArgId,
1308 SourceLocation TypeArgLoc,
1309 bool SelectProtocolFirst) {
1310 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1311 << SelectProtocolFirst << TypeArgId << ProtocolId
1312 << SourceRange(ProtocolLoc);
1313 }
1314
actOnObjCTypeArgsOrProtocolQualifiers(Scope * S,ParsedType baseType,SourceLocation lAngleLoc,ArrayRef<IdentifierInfo * > identifiers,ArrayRef<SourceLocation> identifierLocs,SourceLocation rAngleLoc,SourceLocation & typeArgsLAngleLoc,SmallVectorImpl<ParsedType> & typeArgs,SourceLocation & typeArgsRAngleLoc,SourceLocation & protocolLAngleLoc,SmallVectorImpl<Decl * > & protocols,SourceLocation & protocolRAngleLoc,bool warnOnIncompleteProtocols)1315 void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1316 Scope *S,
1317 ParsedType baseType,
1318 SourceLocation lAngleLoc,
1319 ArrayRef<IdentifierInfo *> identifiers,
1320 ArrayRef<SourceLocation> identifierLocs,
1321 SourceLocation rAngleLoc,
1322 SourceLocation &typeArgsLAngleLoc,
1323 SmallVectorImpl<ParsedType> &typeArgs,
1324 SourceLocation &typeArgsRAngleLoc,
1325 SourceLocation &protocolLAngleLoc,
1326 SmallVectorImpl<Decl *> &protocols,
1327 SourceLocation &protocolRAngleLoc,
1328 bool warnOnIncompleteProtocols) {
1329 // Local function that updates the declaration specifiers with
1330 // protocol information.
1331 unsigned numProtocolsResolved = 0;
1332 auto resolvedAsProtocols = [&] {
1333 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1334
1335 // Determine whether the base type is a parameterized class, in
1336 // which case we want to warn about typos such as
1337 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1338 ObjCInterfaceDecl *baseClass = nullptr;
1339 QualType base = GetTypeFromParser(baseType, nullptr);
1340 bool allAreTypeNames = false;
1341 SourceLocation firstClassNameLoc;
1342 if (!base.isNull()) {
1343 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1344 baseClass = objcObjectType->getInterface();
1345 if (baseClass) {
1346 if (auto typeParams = baseClass->getTypeParamList()) {
1347 if (typeParams->size() == numProtocolsResolved) {
1348 // Note that we should be looking for type names, too.
1349 allAreTypeNames = true;
1350 }
1351 }
1352 }
1353 }
1354 }
1355
1356 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1357 ObjCProtocolDecl *&proto
1358 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1359 // For an objc container, delay protocol reference checking until after we
1360 // can set the objc decl as the availability context, otherwise check now.
1361 if (!warnOnIncompleteProtocols) {
1362 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1363 }
1364
1365 // If this is a forward protocol declaration, get its definition.
1366 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1367 proto = proto->getDefinition();
1368
1369 // If this is a forward declaration and we are supposed to warn in this
1370 // case, do it.
1371 // FIXME: Recover nicely in the hidden case.
1372 ObjCProtocolDecl *forwardDecl = nullptr;
1373 if (warnOnIncompleteProtocols &&
1374 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1375 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1376 << proto->getDeclName();
1377 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1378 << forwardDecl;
1379 }
1380
1381 // If everything this far has been a type name (and we care
1382 // about such things), check whether this name refers to a type
1383 // as well.
1384 if (allAreTypeNames) {
1385 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1386 LookupOrdinaryName)) {
1387 if (isa<ObjCInterfaceDecl>(decl)) {
1388 if (firstClassNameLoc.isInvalid())
1389 firstClassNameLoc = identifierLocs[i];
1390 } else if (!isa<TypeDecl>(decl)) {
1391 // Not a type.
1392 allAreTypeNames = false;
1393 }
1394 } else {
1395 allAreTypeNames = false;
1396 }
1397 }
1398 }
1399
1400 // All of the protocols listed also have type names, and at least
1401 // one is an Objective-C class name. Check whether all of the
1402 // protocol conformances are declared by the base class itself, in
1403 // which case we warn.
1404 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1405 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1406 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1407 bool allProtocolsDeclared = true;
1408 for (auto proto : protocols) {
1409 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1410 allProtocolsDeclared = false;
1411 break;
1412 }
1413 }
1414
1415 if (allProtocolsDeclared) {
1416 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1417 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1418 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1419 " *");
1420 }
1421 }
1422
1423 protocolLAngleLoc = lAngleLoc;
1424 protocolRAngleLoc = rAngleLoc;
1425 assert(protocols.size() == identifierLocs.size());
1426 };
1427
1428 // Attempt to resolve all of the identifiers as protocols.
1429 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1430 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1431 protocols.push_back(proto);
1432 if (proto)
1433 ++numProtocolsResolved;
1434 }
1435
1436 // If all of the names were protocols, these were protocol qualifiers.
1437 if (numProtocolsResolved == identifiers.size())
1438 return resolvedAsProtocols();
1439
1440 // Attempt to resolve all of the identifiers as type names or
1441 // Objective-C class names. The latter is technically ill-formed,
1442 // but is probably something like \c NSArray<NSView *> missing the
1443 // \c*.
1444 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1445 SmallVector<TypeOrClassDecl, 4> typeDecls;
1446 unsigned numTypeDeclsResolved = 0;
1447 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1448 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1449 LookupOrdinaryName);
1450 if (!decl) {
1451 typeDecls.push_back(TypeOrClassDecl());
1452 continue;
1453 }
1454
1455 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1456 typeDecls.push_back(typeDecl);
1457 ++numTypeDeclsResolved;
1458 continue;
1459 }
1460
1461 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1462 typeDecls.push_back(objcClass);
1463 ++numTypeDeclsResolved;
1464 continue;
1465 }
1466
1467 typeDecls.push_back(TypeOrClassDecl());
1468 }
1469
1470 AttributeFactory attrFactory;
1471
1472 // Local function that forms a reference to the given type or
1473 // Objective-C class declaration.
1474 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1475 -> TypeResult {
1476 // Form declaration specifiers. They simply refer to the type.
1477 DeclSpec DS(attrFactory);
1478 const char* prevSpec; // unused
1479 unsigned diagID; // unused
1480 QualType type;
1481 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1482 type = Context.getTypeDeclType(actualTypeDecl);
1483 else
1484 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1485 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1486 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1487 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1488 parsedType, Context.getPrintingPolicy());
1489 // Use the identifier location for the type source range.
1490 DS.SetRangeStart(loc);
1491 DS.SetRangeEnd(loc);
1492
1493 // Form the declarator.
1494 Declarator D(DS, Declarator::TypeNameContext);
1495
1496 // If we have a typedef of an Objective-C class type that is missing a '*',
1497 // add the '*'.
1498 if (type->getAs<ObjCInterfaceType>()) {
1499 SourceLocation starLoc = getLocForEndOfToken(loc);
1500 ParsedAttributes parsedAttrs(attrFactory);
1501 D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1502 SourceLocation(),
1503 SourceLocation(),
1504 SourceLocation(),
1505 SourceLocation(),
1506 SourceLocation()),
1507 parsedAttrs,
1508 starLoc);
1509
1510 // Diagnose the missing '*'.
1511 Diag(loc, diag::err_objc_type_arg_missing_star)
1512 << type
1513 << FixItHint::CreateInsertion(starLoc, " *");
1514 }
1515
1516 // Convert this to a type.
1517 return ActOnTypeName(S, D);
1518 };
1519
1520 // Local function that updates the declaration specifiers with
1521 // type argument information.
1522 auto resolvedAsTypeDecls = [&] {
1523 // We did not resolve these as protocols.
1524 protocols.clear();
1525
1526 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1527 // Map type declarations to type arguments.
1528 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1529 // Map type reference to a type.
1530 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1531 if (!type.isUsable()) {
1532 typeArgs.clear();
1533 return;
1534 }
1535
1536 typeArgs.push_back(type.get());
1537 }
1538
1539 typeArgsLAngleLoc = lAngleLoc;
1540 typeArgsRAngleLoc = rAngleLoc;
1541 };
1542
1543 // If all of the identifiers can be resolved as type names or
1544 // Objective-C class names, we have type arguments.
1545 if (numTypeDeclsResolved == identifiers.size())
1546 return resolvedAsTypeDecls();
1547
1548 // Error recovery: some names weren't found, or we have a mix of
1549 // type and protocol names. Go resolve all of the unresolved names
1550 // and complain if we can't find a consistent answer.
1551 LookupNameKind lookupKind = LookupAnyName;
1552 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1553 // If we already have a protocol or type. Check whether it is the
1554 // right thing.
1555 if (protocols[i] || typeDecls[i]) {
1556 // If we haven't figured out whether we want types or protocols
1557 // yet, try to figure it out from this name.
1558 if (lookupKind == LookupAnyName) {
1559 // If this name refers to both a protocol and a type (e.g., \c
1560 // NSObject), don't conclude anything yet.
1561 if (protocols[i] && typeDecls[i])
1562 continue;
1563
1564 // Otherwise, let this name decide whether we'll be correcting
1565 // toward types or protocols.
1566 lookupKind = protocols[i] ? LookupObjCProtocolName
1567 : LookupOrdinaryName;
1568 continue;
1569 }
1570
1571 // If we want protocols and we have a protocol, there's nothing
1572 // more to do.
1573 if (lookupKind == LookupObjCProtocolName && protocols[i])
1574 continue;
1575
1576 // If we want types and we have a type declaration, there's
1577 // nothing more to do.
1578 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1579 continue;
1580
1581 // We have a conflict: some names refer to protocols and others
1582 // refer to types.
1583 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1584 identifiers[i], identifierLocs[i],
1585 protocols[i] != nullptr);
1586
1587 protocols.clear();
1588 typeArgs.clear();
1589 return;
1590 }
1591
1592 // Perform typo correction on the name.
1593 TypoCorrection corrected = CorrectTypo(
1594 DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1595 nullptr,
1596 llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1597 lookupKind),
1598 CTK_ErrorRecovery);
1599 if (corrected) {
1600 // Did we find a protocol?
1601 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1602 diagnoseTypo(corrected,
1603 PDiag(diag::err_undeclared_protocol_suggest)
1604 << identifiers[i]);
1605 lookupKind = LookupObjCProtocolName;
1606 protocols[i] = proto;
1607 ++numProtocolsResolved;
1608 continue;
1609 }
1610
1611 // Did we find a type?
1612 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1613 diagnoseTypo(corrected,
1614 PDiag(diag::err_unknown_typename_suggest)
1615 << identifiers[i]);
1616 lookupKind = LookupOrdinaryName;
1617 typeDecls[i] = typeDecl;
1618 ++numTypeDeclsResolved;
1619 continue;
1620 }
1621
1622 // Did we find an Objective-C class?
1623 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1624 diagnoseTypo(corrected,
1625 PDiag(diag::err_unknown_type_or_class_name_suggest)
1626 << identifiers[i] << true);
1627 lookupKind = LookupOrdinaryName;
1628 typeDecls[i] = objcClass;
1629 ++numTypeDeclsResolved;
1630 continue;
1631 }
1632 }
1633
1634 // We couldn't find anything.
1635 Diag(identifierLocs[i],
1636 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1637 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1638 : diag::err_unknown_typename))
1639 << identifiers[i];
1640 protocols.clear();
1641 typeArgs.clear();
1642 return;
1643 }
1644
1645 // If all of the names were (corrected to) protocols, these were
1646 // protocol qualifiers.
1647 if (numProtocolsResolved == identifiers.size())
1648 return resolvedAsProtocols();
1649
1650 // Otherwise, all of the names were (corrected to) types.
1651 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1652 return resolvedAsTypeDecls();
1653 }
1654
1655 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1656 /// a class method in its extension.
1657 ///
DiagnoseClassExtensionDupMethods(ObjCCategoryDecl * CAT,ObjCInterfaceDecl * ID)1658 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1659 ObjCInterfaceDecl *ID) {
1660 if (!ID)
1661 return; // Possibly due to previous error
1662
1663 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1664 for (auto *MD : ID->methods())
1665 MethodMap[MD->getSelector()] = MD;
1666
1667 if (MethodMap.empty())
1668 return;
1669 for (const auto *Method : CAT->methods()) {
1670 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1671 if (PrevMethod &&
1672 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1673 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1674 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1675 << Method->getDeclName();
1676 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1677 }
1678 }
1679 }
1680
1681 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1682 Sema::DeclGroupPtrTy
ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,ArrayRef<IdentifierLocPair> IdentList,AttributeList * attrList)1683 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1684 ArrayRef<IdentifierLocPair> IdentList,
1685 AttributeList *attrList) {
1686 SmallVector<Decl *, 8> DeclsInGroup;
1687 for (const IdentifierLocPair &IdentPair : IdentList) {
1688 IdentifierInfo *Ident = IdentPair.first;
1689 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1690 ForRedeclaration);
1691 ObjCProtocolDecl *PDecl
1692 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1693 IdentPair.second, AtProtocolLoc,
1694 PrevDecl);
1695
1696 PushOnScopeChains(PDecl, TUScope);
1697 CheckObjCDeclScope(PDecl);
1698
1699 if (attrList)
1700 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1701
1702 if (PrevDecl)
1703 mergeDeclAttributes(PDecl, PrevDecl);
1704
1705 DeclsInGroup.push_back(PDecl);
1706 }
1707
1708 return BuildDeclaratorGroup(DeclsInGroup, false);
1709 }
1710
1711 Decl *Sema::
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,ObjCTypeParamList * typeParamList,IdentifierInfo * CategoryName,SourceLocation CategoryLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc)1712 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
1713 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1714 ObjCTypeParamList *typeParamList,
1715 IdentifierInfo *CategoryName,
1716 SourceLocation CategoryLoc,
1717 Decl * const *ProtoRefs,
1718 unsigned NumProtoRefs,
1719 const SourceLocation *ProtoLocs,
1720 SourceLocation EndProtoLoc) {
1721 ObjCCategoryDecl *CDecl;
1722 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1723
1724 /// Check that class of this category is already completely declared.
1725
1726 if (!IDecl
1727 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1728 diag::err_category_forward_interface,
1729 CategoryName == nullptr)) {
1730 // Create an invalid ObjCCategoryDecl to serve as context for
1731 // the enclosing method declarations. We mark the decl invalid
1732 // to make it clear that this isn't a valid AST.
1733 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1734 ClassLoc, CategoryLoc, CategoryName,
1735 IDecl, typeParamList);
1736 CDecl->setInvalidDecl();
1737 CurContext->addDecl(CDecl);
1738
1739 if (!IDecl)
1740 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1741 return ActOnObjCContainerStartDefinition(CDecl);
1742 }
1743
1744 if (!CategoryName && IDecl->getImplementation()) {
1745 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1746 Diag(IDecl->getImplementation()->getLocation(),
1747 diag::note_implementation_declared);
1748 }
1749
1750 if (CategoryName) {
1751 /// Check for duplicate interface declaration for this category
1752 if (ObjCCategoryDecl *Previous
1753 = IDecl->FindCategoryDeclaration(CategoryName)) {
1754 // Class extensions can be declared multiple times, categories cannot.
1755 Diag(CategoryLoc, diag::warn_dup_category_def)
1756 << ClassName << CategoryName;
1757 Diag(Previous->getLocation(), diag::note_previous_definition);
1758 }
1759 }
1760
1761 // If we have a type parameter list, check it.
1762 if (typeParamList) {
1763 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1764 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1765 CategoryName
1766 ? TypeParamListContext::Category
1767 : TypeParamListContext::Extension))
1768 typeParamList = nullptr;
1769 } else {
1770 Diag(typeParamList->getLAngleLoc(),
1771 diag::err_objc_parameterized_category_nonclass)
1772 << (CategoryName != nullptr)
1773 << ClassName
1774 << typeParamList->getSourceRange();
1775
1776 typeParamList = nullptr;
1777 }
1778 }
1779
1780 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1781 ClassLoc, CategoryLoc, CategoryName, IDecl,
1782 typeParamList);
1783 // FIXME: PushOnScopeChains?
1784 CurContext->addDecl(CDecl);
1785
1786 if (NumProtoRefs) {
1787 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1788 NumProtoRefs, ProtoLocs);
1789 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1790 ProtoLocs, Context);
1791 // Protocols in the class extension belong to the class.
1792 if (CDecl->IsClassExtension())
1793 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1794 NumProtoRefs, Context);
1795 }
1796
1797 CheckObjCDeclScope(CDecl);
1798 return ActOnObjCContainerStartDefinition(CDecl);
1799 }
1800
1801 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1802 /// category implementation declaration and build an ObjCCategoryImplDecl
1803 /// object.
ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CatName,SourceLocation CatLoc)1804 Decl *Sema::ActOnStartCategoryImplementation(
1805 SourceLocation AtCatImplLoc,
1806 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1807 IdentifierInfo *CatName, SourceLocation CatLoc) {
1808 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1809 ObjCCategoryDecl *CatIDecl = nullptr;
1810 if (IDecl && IDecl->hasDefinition()) {
1811 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1812 if (!CatIDecl) {
1813 // Category @implementation with no corresponding @interface.
1814 // Create and install one.
1815 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1816 ClassLoc, CatLoc,
1817 CatName, IDecl,
1818 /*typeParamList=*/nullptr);
1819 CatIDecl->setImplicit();
1820 }
1821 }
1822
1823 ObjCCategoryImplDecl *CDecl =
1824 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1825 ClassLoc, AtCatImplLoc, CatLoc);
1826 /// Check that class of this category is already completely declared.
1827 if (!IDecl) {
1828 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1829 CDecl->setInvalidDecl();
1830 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1831 diag::err_undef_interface)) {
1832 CDecl->setInvalidDecl();
1833 }
1834
1835 // FIXME: PushOnScopeChains?
1836 CurContext->addDecl(CDecl);
1837
1838 // If the interface is deprecated/unavailable, warn/error about it.
1839 if (IDecl)
1840 DiagnoseUseOfDecl(IDecl, ClassLoc);
1841
1842 // If the interface has the objc_runtime_visible attribute, we
1843 // cannot implement a category for it.
1844 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1845 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1846 << IDecl->getDeclName();
1847 }
1848
1849 /// Check that CatName, category name, is not used in another implementation.
1850 if (CatIDecl) {
1851 if (CatIDecl->getImplementation()) {
1852 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1853 << CatName;
1854 Diag(CatIDecl->getImplementation()->getLocation(),
1855 diag::note_previous_definition);
1856 CDecl->setInvalidDecl();
1857 } else {
1858 CatIDecl->setImplementation(CDecl);
1859 // Warn on implementating category of deprecated class under
1860 // -Wdeprecated-implementations flag.
1861 DiagnoseObjCImplementedDeprecations(*this,
1862 dyn_cast<NamedDecl>(IDecl),
1863 CDecl->getLocation(), 2);
1864 }
1865 }
1866
1867 CheckObjCDeclScope(CDecl);
1868 return ActOnObjCContainerStartDefinition(CDecl);
1869 }
1870
ActOnStartClassImplementation(SourceLocation AtClassImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperClassname,SourceLocation SuperClassLoc)1871 Decl *Sema::ActOnStartClassImplementation(
1872 SourceLocation AtClassImplLoc,
1873 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1874 IdentifierInfo *SuperClassname,
1875 SourceLocation SuperClassLoc) {
1876 ObjCInterfaceDecl *IDecl = nullptr;
1877 // Check for another declaration kind with the same name.
1878 NamedDecl *PrevDecl
1879 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1880 ForRedeclaration);
1881 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1882 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1883 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1884 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1885 // FIXME: This will produce an error if the definition of the interface has
1886 // been imported from a module but is not visible.
1887 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1888 diag::warn_undef_interface);
1889 } else {
1890 // We did not find anything with the name ClassName; try to correct for
1891 // typos in the class name.
1892 TypoCorrection Corrected = CorrectTypo(
1893 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1894 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1895 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1896 // Suggest the (potentially) correct interface name. Don't provide a
1897 // code-modification hint or use the typo name for recovery, because
1898 // this is just a warning. The program may actually be correct.
1899 diagnoseTypo(Corrected,
1900 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1901 /*ErrorRecovery*/false);
1902 } else {
1903 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1904 }
1905 }
1906
1907 // Check that super class name is valid class name
1908 ObjCInterfaceDecl *SDecl = nullptr;
1909 if (SuperClassname) {
1910 // Check if a different kind of symbol declared in this scope.
1911 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1912 LookupOrdinaryName);
1913 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1914 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1915 << SuperClassname;
1916 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1917 } else {
1918 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1919 if (SDecl && !SDecl->hasDefinition())
1920 SDecl = nullptr;
1921 if (!SDecl)
1922 Diag(SuperClassLoc, diag::err_undef_superclass)
1923 << SuperClassname << ClassName;
1924 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1925 // This implementation and its interface do not have the same
1926 // super class.
1927 Diag(SuperClassLoc, diag::err_conflicting_super_class)
1928 << SDecl->getDeclName();
1929 Diag(SDecl->getLocation(), diag::note_previous_definition);
1930 }
1931 }
1932 }
1933
1934 if (!IDecl) {
1935 // Legacy case of @implementation with no corresponding @interface.
1936 // Build, chain & install the interface decl into the identifier.
1937
1938 // FIXME: Do we support attributes on the @implementation? If so we should
1939 // copy them over.
1940 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1941 ClassName, /*typeParamList=*/nullptr,
1942 /*PrevDecl=*/nullptr, ClassLoc,
1943 true);
1944 IDecl->startDefinition();
1945 if (SDecl) {
1946 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
1947 Context.getObjCInterfaceType(SDecl),
1948 SuperClassLoc));
1949 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1950 } else {
1951 IDecl->setEndOfDefinitionLoc(ClassLoc);
1952 }
1953
1954 PushOnScopeChains(IDecl, TUScope);
1955 } else {
1956 // Mark the interface as being completed, even if it was just as
1957 // @class ....;
1958 // declaration; the user cannot reopen it.
1959 if (!IDecl->hasDefinition())
1960 IDecl->startDefinition();
1961 }
1962
1963 ObjCImplementationDecl* IMPDecl =
1964 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1965 ClassLoc, AtClassImplLoc, SuperClassLoc);
1966
1967 if (CheckObjCDeclScope(IMPDecl))
1968 return ActOnObjCContainerStartDefinition(IMPDecl);
1969
1970 // Check that there is no duplicate implementation of this class.
1971 if (IDecl->getImplementation()) {
1972 // FIXME: Don't leak everything!
1973 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1974 Diag(IDecl->getImplementation()->getLocation(),
1975 diag::note_previous_definition);
1976 IMPDecl->setInvalidDecl();
1977 } else { // add it to the list.
1978 IDecl->setImplementation(IMPDecl);
1979 PushOnScopeChains(IMPDecl, TUScope);
1980 // Warn on implementating deprecated class under
1981 // -Wdeprecated-implementations flag.
1982 DiagnoseObjCImplementedDeprecations(*this,
1983 dyn_cast<NamedDecl>(IDecl),
1984 IMPDecl->getLocation(), 1);
1985 }
1986
1987 // If the superclass has the objc_runtime_visible attribute, we
1988 // cannot implement a subclass of it.
1989 if (IDecl->getSuperClass() &&
1990 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
1991 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
1992 << IDecl->getDeclName()
1993 << IDecl->getSuperClass()->getDeclName();
1994 }
1995
1996 return ActOnObjCContainerStartDefinition(IMPDecl);
1997 }
1998
1999 Sema::DeclGroupPtrTy
ActOnFinishObjCImplementation(Decl * ObjCImpDecl,ArrayRef<Decl * > Decls)2000 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2001 SmallVector<Decl *, 64> DeclsInGroup;
2002 DeclsInGroup.reserve(Decls.size() + 1);
2003
2004 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2005 Decl *Dcl = Decls[i];
2006 if (!Dcl)
2007 continue;
2008 if (Dcl->getDeclContext()->isFileContext())
2009 Dcl->setTopLevelDeclInObjCContainer();
2010 DeclsInGroup.push_back(Dcl);
2011 }
2012
2013 DeclsInGroup.push_back(ObjCImpDecl);
2014
2015 return BuildDeclaratorGroup(DeclsInGroup, false);
2016 }
2017
CheckImplementationIvars(ObjCImplementationDecl * ImpDecl,ObjCIvarDecl ** ivars,unsigned numIvars,SourceLocation RBrace)2018 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2019 ObjCIvarDecl **ivars, unsigned numIvars,
2020 SourceLocation RBrace) {
2021 assert(ImpDecl && "missing implementation decl");
2022 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2023 if (!IDecl)
2024 return;
2025 /// Check case of non-existing \@interface decl.
2026 /// (legacy objective-c \@implementation decl without an \@interface decl).
2027 /// Add implementations's ivar to the synthesize class's ivar list.
2028 if (IDecl->isImplicitInterfaceDecl()) {
2029 IDecl->setEndOfDefinitionLoc(RBrace);
2030 // Add ivar's to class's DeclContext.
2031 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2032 ivars[i]->setLexicalDeclContext(ImpDecl);
2033 IDecl->makeDeclVisibleInContext(ivars[i]);
2034 ImpDecl->addDecl(ivars[i]);
2035 }
2036
2037 return;
2038 }
2039 // If implementation has empty ivar list, just return.
2040 if (numIvars == 0)
2041 return;
2042
2043 assert(ivars && "missing @implementation ivars");
2044 if (LangOpts.ObjCRuntime.isNonFragile()) {
2045 if (ImpDecl->getSuperClass())
2046 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2047 for (unsigned i = 0; i < numIvars; i++) {
2048 ObjCIvarDecl* ImplIvar = ivars[i];
2049 if (const ObjCIvarDecl *ClsIvar =
2050 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2051 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2052 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2053 continue;
2054 }
2055 // Check class extensions (unnamed categories) for duplicate ivars.
2056 for (const auto *CDecl : IDecl->visible_extensions()) {
2057 if (const ObjCIvarDecl *ClsExtIvar =
2058 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2059 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2060 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2061 continue;
2062 }
2063 }
2064 // Instance ivar to Implementation's DeclContext.
2065 ImplIvar->setLexicalDeclContext(ImpDecl);
2066 IDecl->makeDeclVisibleInContext(ImplIvar);
2067 ImpDecl->addDecl(ImplIvar);
2068 }
2069 return;
2070 }
2071 // Check interface's Ivar list against those in the implementation.
2072 // names and types must match.
2073 //
2074 unsigned j = 0;
2075 ObjCInterfaceDecl::ivar_iterator
2076 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2077 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2078 ObjCIvarDecl* ImplIvar = ivars[j++];
2079 ObjCIvarDecl* ClsIvar = *IVI;
2080 assert (ImplIvar && "missing implementation ivar");
2081 assert (ClsIvar && "missing class ivar");
2082
2083 // First, make sure the types match.
2084 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2085 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2086 << ImplIvar->getIdentifier()
2087 << ImplIvar->getType() << ClsIvar->getType();
2088 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2089 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2090 ImplIvar->getBitWidthValue(Context) !=
2091 ClsIvar->getBitWidthValue(Context)) {
2092 Diag(ImplIvar->getBitWidth()->getLocStart(),
2093 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2094 Diag(ClsIvar->getBitWidth()->getLocStart(),
2095 diag::note_previous_definition);
2096 }
2097 // Make sure the names are identical.
2098 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2099 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2100 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2101 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2102 }
2103 --numIvars;
2104 }
2105
2106 if (numIvars > 0)
2107 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2108 else if (IVI != IVE)
2109 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2110 }
2111
WarnUndefinedMethod(Sema & S,SourceLocation ImpLoc,ObjCMethodDecl * method,bool & IncompleteImpl,unsigned DiagID,NamedDecl * NeededFor=nullptr)2112 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2113 ObjCMethodDecl *method,
2114 bool &IncompleteImpl,
2115 unsigned DiagID,
2116 NamedDecl *NeededFor = nullptr) {
2117 // No point warning no definition of method which is 'unavailable'.
2118 switch (method->getAvailability()) {
2119 case AR_Available:
2120 case AR_Deprecated:
2121 break;
2122
2123 // Don't warn about unavailable or not-yet-introduced methods.
2124 case AR_NotYetIntroduced:
2125 case AR_Unavailable:
2126 return;
2127 }
2128
2129 // FIXME: For now ignore 'IncompleteImpl'.
2130 // Previously we grouped all unimplemented methods under a single
2131 // warning, but some users strongly voiced that they would prefer
2132 // separate warnings. We will give that approach a try, as that
2133 // matches what we do with protocols.
2134 {
2135 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2136 B << method;
2137 if (NeededFor)
2138 B << NeededFor;
2139 }
2140
2141 // Issue a note to the original declaration.
2142 SourceLocation MethodLoc = method->getLocStart();
2143 if (MethodLoc.isValid())
2144 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2145 }
2146
2147 /// Determines if type B can be substituted for type A. Returns true if we can
2148 /// guarantee that anything that the user will do to an object of type A can
2149 /// also be done to an object of type B. This is trivially true if the two
2150 /// types are the same, or if B is a subclass of A. It becomes more complex
2151 /// in cases where protocols are involved.
2152 ///
2153 /// Object types in Objective-C describe the minimum requirements for an
2154 /// object, rather than providing a complete description of a type. For
2155 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2156 /// The principle of substitutability means that we may use an instance of A
2157 /// anywhere that we may use an instance of B - it will implement all of the
2158 /// ivars of B and all of the methods of B.
2159 ///
2160 /// This substitutability is important when type checking methods, because
2161 /// the implementation may have stricter type definitions than the interface.
2162 /// The interface specifies minimum requirements, but the implementation may
2163 /// have more accurate ones. For example, a method may privately accept
2164 /// instances of B, but only publish that it accepts instances of A. Any
2165 /// object passed to it will be type checked against B, and so will implicitly
2166 /// by a valid A*. Similarly, a method may return a subclass of the class that
2167 /// it is declared as returning.
2168 ///
2169 /// This is most important when considering subclassing. A method in a
2170 /// subclass must accept any object as an argument that its superclass's
2171 /// implementation accepts. It may, however, accept a more general type
2172 /// without breaking substitutability (i.e. you can still use the subclass
2173 /// anywhere that you can use the superclass, but not vice versa). The
2174 /// converse requirement applies to return types: the return type for a
2175 /// subclass method must be a valid object of the kind that the superclass
2176 /// advertises, but it may be specified more accurately. This avoids the need
2177 /// for explicit down-casting by callers.
2178 ///
2179 /// Note: This is a stricter requirement than for assignment.
isObjCTypeSubstitutable(ASTContext & Context,const ObjCObjectPointerType * A,const ObjCObjectPointerType * B,bool rejectId)2180 static bool isObjCTypeSubstitutable(ASTContext &Context,
2181 const ObjCObjectPointerType *A,
2182 const ObjCObjectPointerType *B,
2183 bool rejectId) {
2184 // Reject a protocol-unqualified id.
2185 if (rejectId && B->isObjCIdType()) return false;
2186
2187 // If B is a qualified id, then A must also be a qualified id and it must
2188 // implement all of the protocols in B. It may not be a qualified class.
2189 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2190 // stricter definition so it is not substitutable for id<A>.
2191 if (B->isObjCQualifiedIdType()) {
2192 return A->isObjCQualifiedIdType() &&
2193 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2194 QualType(B,0),
2195 false);
2196 }
2197
2198 /*
2199 // id is a special type that bypasses type checking completely. We want a
2200 // warning when it is used in one place but not another.
2201 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2202
2203
2204 // If B is a qualified id, then A must also be a qualified id (which it isn't
2205 // if we've got this far)
2206 if (B->isObjCQualifiedIdType()) return false;
2207 */
2208
2209 // Now we know that A and B are (potentially-qualified) class types. The
2210 // normal rules for assignment apply.
2211 return Context.canAssignObjCInterfaces(A, B);
2212 }
2213
getTypeRange(TypeSourceInfo * TSI)2214 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2215 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2216 }
2217
2218 /// Determine whether two set of Objective-C declaration qualifiers conflict.
objcModifiersConflict(Decl::ObjCDeclQualifier x,Decl::ObjCDeclQualifier y)2219 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2220 Decl::ObjCDeclQualifier y) {
2221 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2222 (y & ~Decl::OBJC_TQ_CSNullability);
2223 }
2224
CheckMethodOverrideReturn(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)2225 static bool CheckMethodOverrideReturn(Sema &S,
2226 ObjCMethodDecl *MethodImpl,
2227 ObjCMethodDecl *MethodDecl,
2228 bool IsProtocolMethodDecl,
2229 bool IsOverridingMode,
2230 bool Warn) {
2231 if (IsProtocolMethodDecl &&
2232 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2233 MethodImpl->getObjCDeclQualifier())) {
2234 if (Warn) {
2235 S.Diag(MethodImpl->getLocation(),
2236 (IsOverridingMode
2237 ? diag::warn_conflicting_overriding_ret_type_modifiers
2238 : diag::warn_conflicting_ret_type_modifiers))
2239 << MethodImpl->getDeclName()
2240 << MethodImpl->getReturnTypeSourceRange();
2241 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2242 << MethodDecl->getReturnTypeSourceRange();
2243 }
2244 else
2245 return false;
2246 }
2247 if (Warn && IsOverridingMode &&
2248 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2249 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2250 MethodDecl->getReturnType(),
2251 false)) {
2252 auto nullabilityMethodImpl =
2253 *MethodImpl->getReturnType()->getNullability(S.Context);
2254 auto nullabilityMethodDecl =
2255 *MethodDecl->getReturnType()->getNullability(S.Context);
2256 S.Diag(MethodImpl->getLocation(),
2257 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2258 << DiagNullabilityKind(
2259 nullabilityMethodImpl,
2260 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2261 != 0))
2262 << DiagNullabilityKind(
2263 nullabilityMethodDecl,
2264 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2265 != 0));
2266 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2267 }
2268
2269 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2270 MethodDecl->getReturnType()))
2271 return true;
2272 if (!Warn)
2273 return false;
2274
2275 unsigned DiagID =
2276 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2277 : diag::warn_conflicting_ret_types;
2278
2279 // Mismatches between ObjC pointers go into a different warning
2280 // category, and sometimes they're even completely whitelisted.
2281 if (const ObjCObjectPointerType *ImplPtrTy =
2282 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2283 if (const ObjCObjectPointerType *IfacePtrTy =
2284 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2285 // Allow non-matching return types as long as they don't violate
2286 // the principle of substitutability. Specifically, we permit
2287 // return types that are subclasses of the declared return type,
2288 // or that are more-qualified versions of the declared type.
2289 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2290 return false;
2291
2292 DiagID =
2293 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2294 : diag::warn_non_covariant_ret_types;
2295 }
2296 }
2297
2298 S.Diag(MethodImpl->getLocation(), DiagID)
2299 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2300 << MethodImpl->getReturnType()
2301 << MethodImpl->getReturnTypeSourceRange();
2302 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2303 ? diag::note_previous_declaration
2304 : diag::note_previous_definition)
2305 << MethodDecl->getReturnTypeSourceRange();
2306 return false;
2307 }
2308
CheckMethodOverrideParam(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,ParmVarDecl * ImplVar,ParmVarDecl * IfaceVar,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)2309 static bool CheckMethodOverrideParam(Sema &S,
2310 ObjCMethodDecl *MethodImpl,
2311 ObjCMethodDecl *MethodDecl,
2312 ParmVarDecl *ImplVar,
2313 ParmVarDecl *IfaceVar,
2314 bool IsProtocolMethodDecl,
2315 bool IsOverridingMode,
2316 bool Warn) {
2317 if (IsProtocolMethodDecl &&
2318 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2319 IfaceVar->getObjCDeclQualifier())) {
2320 if (Warn) {
2321 if (IsOverridingMode)
2322 S.Diag(ImplVar->getLocation(),
2323 diag::warn_conflicting_overriding_param_modifiers)
2324 << getTypeRange(ImplVar->getTypeSourceInfo())
2325 << MethodImpl->getDeclName();
2326 else S.Diag(ImplVar->getLocation(),
2327 diag::warn_conflicting_param_modifiers)
2328 << getTypeRange(ImplVar->getTypeSourceInfo())
2329 << MethodImpl->getDeclName();
2330 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2331 << getTypeRange(IfaceVar->getTypeSourceInfo());
2332 }
2333 else
2334 return false;
2335 }
2336
2337 QualType ImplTy = ImplVar->getType();
2338 QualType IfaceTy = IfaceVar->getType();
2339 if (Warn && IsOverridingMode &&
2340 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2341 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2342 S.Diag(ImplVar->getLocation(),
2343 diag::warn_conflicting_nullability_attr_overriding_param_types)
2344 << DiagNullabilityKind(
2345 *ImplTy->getNullability(S.Context),
2346 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2347 != 0))
2348 << DiagNullabilityKind(
2349 *IfaceTy->getNullability(S.Context),
2350 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2351 != 0));
2352 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2353 }
2354 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2355 return true;
2356
2357 if (!Warn)
2358 return false;
2359 unsigned DiagID =
2360 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2361 : diag::warn_conflicting_param_types;
2362
2363 // Mismatches between ObjC pointers go into a different warning
2364 // category, and sometimes they're even completely whitelisted.
2365 if (const ObjCObjectPointerType *ImplPtrTy =
2366 ImplTy->getAs<ObjCObjectPointerType>()) {
2367 if (const ObjCObjectPointerType *IfacePtrTy =
2368 IfaceTy->getAs<ObjCObjectPointerType>()) {
2369 // Allow non-matching argument types as long as they don't
2370 // violate the principle of substitutability. Specifically, the
2371 // implementation must accept any objects that the superclass
2372 // accepts, however it may also accept others.
2373 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2374 return false;
2375
2376 DiagID =
2377 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2378 : diag::warn_non_contravariant_param_types;
2379 }
2380 }
2381
2382 S.Diag(ImplVar->getLocation(), DiagID)
2383 << getTypeRange(ImplVar->getTypeSourceInfo())
2384 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2385 S.Diag(IfaceVar->getLocation(),
2386 (IsOverridingMode ? diag::note_previous_declaration
2387 : diag::note_previous_definition))
2388 << getTypeRange(IfaceVar->getTypeSourceInfo());
2389 return false;
2390 }
2391
2392 /// In ARC, check whether the conventional meanings of the two methods
2393 /// match. If they don't, it's a hard error.
checkMethodFamilyMismatch(Sema & S,ObjCMethodDecl * impl,ObjCMethodDecl * decl)2394 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2395 ObjCMethodDecl *decl) {
2396 ObjCMethodFamily implFamily = impl->getMethodFamily();
2397 ObjCMethodFamily declFamily = decl->getMethodFamily();
2398 if (implFamily == declFamily) return false;
2399
2400 // Since conventions are sorted by selector, the only possibility is
2401 // that the types differ enough to cause one selector or the other
2402 // to fall out of the family.
2403 assert(implFamily == OMF_None || declFamily == OMF_None);
2404
2405 // No further diagnostics required on invalid declarations.
2406 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2407
2408 const ObjCMethodDecl *unmatched = impl;
2409 ObjCMethodFamily family = declFamily;
2410 unsigned errorID = diag::err_arc_lost_method_convention;
2411 unsigned noteID = diag::note_arc_lost_method_convention;
2412 if (declFamily == OMF_None) {
2413 unmatched = decl;
2414 family = implFamily;
2415 errorID = diag::err_arc_gained_method_convention;
2416 noteID = diag::note_arc_gained_method_convention;
2417 }
2418
2419 // Indexes into a %select clause in the diagnostic.
2420 enum FamilySelector {
2421 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2422 };
2423 FamilySelector familySelector = FamilySelector();
2424
2425 switch (family) {
2426 case OMF_None: llvm_unreachable("logic error, no method convention");
2427 case OMF_retain:
2428 case OMF_release:
2429 case OMF_autorelease:
2430 case OMF_dealloc:
2431 case OMF_finalize:
2432 case OMF_retainCount:
2433 case OMF_self:
2434 case OMF_initialize:
2435 case OMF_performSelector:
2436 // Mismatches for these methods don't change ownership
2437 // conventions, so we don't care.
2438 return false;
2439
2440 case OMF_init: familySelector = F_init; break;
2441 case OMF_alloc: familySelector = F_alloc; break;
2442 case OMF_copy: familySelector = F_copy; break;
2443 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2444 case OMF_new: familySelector = F_new; break;
2445 }
2446
2447 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2448 ReasonSelector reasonSelector;
2449
2450 // The only reason these methods don't fall within their families is
2451 // due to unusual result types.
2452 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2453 reasonSelector = R_UnrelatedReturn;
2454 } else {
2455 reasonSelector = R_NonObjectReturn;
2456 }
2457
2458 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2459 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2460
2461 return true;
2462 }
2463
WarnConflictingTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)2464 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2465 ObjCMethodDecl *MethodDecl,
2466 bool IsProtocolMethodDecl) {
2467 if (getLangOpts().ObjCAutoRefCount &&
2468 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2469 return;
2470
2471 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2472 IsProtocolMethodDecl, false,
2473 true);
2474
2475 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2476 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2477 EF = MethodDecl->param_end();
2478 IM != EM && IF != EF; ++IM, ++IF) {
2479 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2480 IsProtocolMethodDecl, false, true);
2481 }
2482
2483 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2484 Diag(ImpMethodDecl->getLocation(),
2485 diag::warn_conflicting_variadic);
2486 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2487 }
2488 }
2489
CheckConflictingOverridingMethod(ObjCMethodDecl * Method,ObjCMethodDecl * Overridden,bool IsProtocolMethodDecl)2490 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2491 ObjCMethodDecl *Overridden,
2492 bool IsProtocolMethodDecl) {
2493
2494 CheckMethodOverrideReturn(*this, Method, Overridden,
2495 IsProtocolMethodDecl, true,
2496 true);
2497
2498 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2499 IF = Overridden->param_begin(), EM = Method->param_end(),
2500 EF = Overridden->param_end();
2501 IM != EM && IF != EF; ++IM, ++IF) {
2502 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2503 IsProtocolMethodDecl, true, true);
2504 }
2505
2506 if (Method->isVariadic() != Overridden->isVariadic()) {
2507 Diag(Method->getLocation(),
2508 diag::warn_conflicting_overriding_variadic);
2509 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2510 }
2511 }
2512
2513 /// WarnExactTypedMethods - This routine issues a warning if method
2514 /// implementation declaration matches exactly that of its declaration.
WarnExactTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)2515 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2516 ObjCMethodDecl *MethodDecl,
2517 bool IsProtocolMethodDecl) {
2518 // don't issue warning when protocol method is optional because primary
2519 // class is not required to implement it and it is safe for protocol
2520 // to implement it.
2521 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2522 return;
2523 // don't issue warning when primary class's method is
2524 // depecated/unavailable.
2525 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2526 MethodDecl->hasAttr<DeprecatedAttr>())
2527 return;
2528
2529 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2530 IsProtocolMethodDecl, false, false);
2531 if (match)
2532 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2533 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2534 EF = MethodDecl->param_end();
2535 IM != EM && IF != EF; ++IM, ++IF) {
2536 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2537 *IM, *IF,
2538 IsProtocolMethodDecl, false, false);
2539 if (!match)
2540 break;
2541 }
2542 if (match)
2543 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2544 if (match)
2545 match = !(MethodDecl->isClassMethod() &&
2546 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2547
2548 if (match) {
2549 Diag(ImpMethodDecl->getLocation(),
2550 diag::warn_category_method_impl_match);
2551 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2552 << MethodDecl->getDeclName();
2553 }
2554 }
2555
2556 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2557 /// improve the efficiency of selector lookups and type checking by associating
2558 /// with each protocol / interface / category the flattened instance tables. If
2559 /// we used an immutable set to keep the table then it wouldn't add significant
2560 /// memory cost and it would be handy for lookups.
2561
2562 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2563 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2564
findProtocolsWithExplicitImpls(const ObjCProtocolDecl * PDecl,ProtocolNameSet & PNS)2565 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2566 ProtocolNameSet &PNS) {
2567 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2568 PNS.insert(PDecl->getIdentifier());
2569 for (const auto *PI : PDecl->protocols())
2570 findProtocolsWithExplicitImpls(PI, PNS);
2571 }
2572
2573 /// Recursively populates a set with all conformed protocols in a class
2574 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2575 /// attribute.
findProtocolsWithExplicitImpls(const ObjCInterfaceDecl * Super,ProtocolNameSet & PNS)2576 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2577 ProtocolNameSet &PNS) {
2578 if (!Super)
2579 return;
2580
2581 for (const auto *I : Super->all_referenced_protocols())
2582 findProtocolsWithExplicitImpls(I, PNS);
2583
2584 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2585 }
2586
2587 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2588 /// Declared in protocol, and those referenced by it.
CheckProtocolMethodDefs(Sema & S,SourceLocation ImpLoc,ObjCProtocolDecl * PDecl,bool & IncompleteImpl,const Sema::SelectorSet & InsMap,const Sema::SelectorSet & ClsMap,ObjCContainerDecl * CDecl,LazyProtocolNameSet & ProtocolsExplictImpl)2589 static void CheckProtocolMethodDefs(Sema &S,
2590 SourceLocation ImpLoc,
2591 ObjCProtocolDecl *PDecl,
2592 bool& IncompleteImpl,
2593 const Sema::SelectorSet &InsMap,
2594 const Sema::SelectorSet &ClsMap,
2595 ObjCContainerDecl *CDecl,
2596 LazyProtocolNameSet &ProtocolsExplictImpl) {
2597 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2598 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2599 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2600 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2601
2602 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2603 ObjCInterfaceDecl *NSIDecl = nullptr;
2604
2605 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2606 // then we should check if any class in the super class hierarchy also
2607 // conforms to this protocol, either directly or via protocol inheritance.
2608 // If so, we can skip checking this protocol completely because we
2609 // know that a parent class already satisfies this protocol.
2610 //
2611 // Note: we could generalize this logic for all protocols, and merely
2612 // add the limit on looking at the super class chain for just
2613 // specially marked protocols. This may be a good optimization. This
2614 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2615 // protocols for now for controlled evaluation.
2616 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2617 if (!ProtocolsExplictImpl) {
2618 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2619 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2620 }
2621 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2622 ProtocolsExplictImpl->end())
2623 return;
2624
2625 // If no super class conforms to the protocol, we should not search
2626 // for methods in the super class to implicitly satisfy the protocol.
2627 Super = nullptr;
2628 }
2629
2630 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2631 // check to see if class implements forwardInvocation method and objects
2632 // of this class are derived from 'NSProxy' so that to forward requests
2633 // from one object to another.
2634 // Under such conditions, which means that every method possible is
2635 // implemented in the class, we should not issue "Method definition not
2636 // found" warnings.
2637 // FIXME: Use a general GetUnarySelector method for this.
2638 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2639 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2640 if (InsMap.count(fISelector))
2641 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2642 // need be implemented in the implementation.
2643 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2644 }
2645
2646 // If this is a forward protocol declaration, get its definition.
2647 if (!PDecl->isThisDeclarationADefinition() &&
2648 PDecl->getDefinition())
2649 PDecl = PDecl->getDefinition();
2650
2651 // If a method lookup fails locally we still need to look and see if
2652 // the method was implemented by a base class or an inherited
2653 // protocol. This lookup is slow, but occurs rarely in correct code
2654 // and otherwise would terminate in a warning.
2655
2656 // check unimplemented instance methods.
2657 if (!NSIDecl)
2658 for (auto *method : PDecl->instance_methods()) {
2659 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2660 !method->isPropertyAccessor() &&
2661 !InsMap.count(method->getSelector()) &&
2662 (!Super || !Super->lookupMethod(method->getSelector(),
2663 true /* instance */,
2664 false /* shallowCategory */,
2665 true /* followsSuper */,
2666 nullptr /* category */))) {
2667 // If a method is not implemented in the category implementation but
2668 // has been declared in its primary class, superclass,
2669 // or in one of their protocols, no need to issue the warning.
2670 // This is because method will be implemented in the primary class
2671 // or one of its super class implementation.
2672
2673 // Ugly, but necessary. Method declared in protcol might have
2674 // have been synthesized due to a property declared in the class which
2675 // uses the protocol.
2676 if (ObjCMethodDecl *MethodInClass =
2677 IDecl->lookupMethod(method->getSelector(),
2678 true /* instance */,
2679 true /* shallowCategoryLookup */,
2680 false /* followSuper */))
2681 if (C || MethodInClass->isPropertyAccessor())
2682 continue;
2683 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2684 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2685 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2686 PDecl);
2687 }
2688 }
2689 }
2690 // check unimplemented class methods
2691 for (auto *method : PDecl->class_methods()) {
2692 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2693 !ClsMap.count(method->getSelector()) &&
2694 (!Super || !Super->lookupMethod(method->getSelector(),
2695 false /* class method */,
2696 false /* shallowCategoryLookup */,
2697 true /* followSuper */,
2698 nullptr /* category */))) {
2699 // See above comment for instance method lookups.
2700 if (C && IDecl->lookupMethod(method->getSelector(),
2701 false /* class */,
2702 true /* shallowCategoryLookup */,
2703 false /* followSuper */))
2704 continue;
2705
2706 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2707 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2708 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2709 }
2710 }
2711 }
2712 // Check on this protocols's referenced protocols, recursively.
2713 for (auto *PI : PDecl->protocols())
2714 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2715 CDecl, ProtocolsExplictImpl);
2716 }
2717
2718 /// MatchAllMethodDeclarations - Check methods declared in interface
2719 /// or protocol against those declared in their implementations.
2720 ///
MatchAllMethodDeclarations(const SelectorSet & InsMap,const SelectorSet & ClsMap,SelectorSet & InsMapSeen,SelectorSet & ClsMapSeen,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool & IncompleteImpl,bool ImmediateClass,bool WarnCategoryMethodImpl)2721 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2722 const SelectorSet &ClsMap,
2723 SelectorSet &InsMapSeen,
2724 SelectorSet &ClsMapSeen,
2725 ObjCImplDecl* IMPDecl,
2726 ObjCContainerDecl* CDecl,
2727 bool &IncompleteImpl,
2728 bool ImmediateClass,
2729 bool WarnCategoryMethodImpl) {
2730 // Check and see if instance methods in class interface have been
2731 // implemented in the implementation class. If so, their types match.
2732 for (auto *I : CDecl->instance_methods()) {
2733 if (!InsMapSeen.insert(I->getSelector()).second)
2734 continue;
2735 if (!I->isPropertyAccessor() &&
2736 !InsMap.count(I->getSelector())) {
2737 if (ImmediateClass)
2738 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2739 diag::warn_undef_method_impl);
2740 continue;
2741 } else {
2742 ObjCMethodDecl *ImpMethodDecl =
2743 IMPDecl->getInstanceMethod(I->getSelector());
2744 assert(CDecl->getInstanceMethod(I->getSelector()) &&
2745 "Expected to find the method through lookup as well");
2746 // ImpMethodDecl may be null as in a @dynamic property.
2747 if (ImpMethodDecl) {
2748 if (!WarnCategoryMethodImpl)
2749 WarnConflictingTypedMethods(ImpMethodDecl, I,
2750 isa<ObjCProtocolDecl>(CDecl));
2751 else if (!I->isPropertyAccessor())
2752 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2753 }
2754 }
2755 }
2756
2757 // Check and see if class methods in class interface have been
2758 // implemented in the implementation class. If so, their types match.
2759 for (auto *I : CDecl->class_methods()) {
2760 if (!ClsMapSeen.insert(I->getSelector()).second)
2761 continue;
2762 if (!I->isPropertyAccessor() &&
2763 !ClsMap.count(I->getSelector())) {
2764 if (ImmediateClass)
2765 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2766 diag::warn_undef_method_impl);
2767 } else {
2768 ObjCMethodDecl *ImpMethodDecl =
2769 IMPDecl->getClassMethod(I->getSelector());
2770 assert(CDecl->getClassMethod(I->getSelector()) &&
2771 "Expected to find the method through lookup as well");
2772 // ImpMethodDecl may be null as in a @dynamic property.
2773 if (ImpMethodDecl) {
2774 if (!WarnCategoryMethodImpl)
2775 WarnConflictingTypedMethods(ImpMethodDecl, I,
2776 isa<ObjCProtocolDecl>(CDecl));
2777 else if (!I->isPropertyAccessor())
2778 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2779 }
2780 }
2781 }
2782
2783 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2784 // Also, check for methods declared in protocols inherited by
2785 // this protocol.
2786 for (auto *PI : PD->protocols())
2787 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2788 IMPDecl, PI, IncompleteImpl, false,
2789 WarnCategoryMethodImpl);
2790 }
2791
2792 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2793 // when checking that methods in implementation match their declaration,
2794 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2795 // extension; as well as those in categories.
2796 if (!WarnCategoryMethodImpl) {
2797 for (auto *Cat : I->visible_categories())
2798 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2799 IMPDecl, Cat, IncompleteImpl,
2800 ImmediateClass && Cat->IsClassExtension(),
2801 WarnCategoryMethodImpl);
2802 } else {
2803 // Also methods in class extensions need be looked at next.
2804 for (auto *Ext : I->visible_extensions())
2805 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2806 IMPDecl, Ext, IncompleteImpl, false,
2807 WarnCategoryMethodImpl);
2808 }
2809
2810 // Check for any implementation of a methods declared in protocol.
2811 for (auto *PI : I->all_referenced_protocols())
2812 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2813 IMPDecl, PI, IncompleteImpl, false,
2814 WarnCategoryMethodImpl);
2815
2816 // FIXME. For now, we are not checking for extact match of methods
2817 // in category implementation and its primary class's super class.
2818 if (!WarnCategoryMethodImpl && I->getSuperClass())
2819 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2820 IMPDecl,
2821 I->getSuperClass(), IncompleteImpl, false);
2822 }
2823 }
2824
2825 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2826 /// category matches with those implemented in its primary class and
2827 /// warns each time an exact match is found.
CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl * CatIMPDecl)2828 void Sema::CheckCategoryVsClassMethodMatches(
2829 ObjCCategoryImplDecl *CatIMPDecl) {
2830 // Get category's primary class.
2831 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2832 if (!CatDecl)
2833 return;
2834 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2835 if (!IDecl)
2836 return;
2837 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2838 SelectorSet InsMap, ClsMap;
2839
2840 for (const auto *I : CatIMPDecl->instance_methods()) {
2841 Selector Sel = I->getSelector();
2842 // When checking for methods implemented in the category, skip over
2843 // those declared in category class's super class. This is because
2844 // the super class must implement the method.
2845 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2846 continue;
2847 InsMap.insert(Sel);
2848 }
2849
2850 for (const auto *I : CatIMPDecl->class_methods()) {
2851 Selector Sel = I->getSelector();
2852 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2853 continue;
2854 ClsMap.insert(Sel);
2855 }
2856 if (InsMap.empty() && ClsMap.empty())
2857 return;
2858
2859 SelectorSet InsMapSeen, ClsMapSeen;
2860 bool IncompleteImpl = false;
2861 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2862 CatIMPDecl, IDecl,
2863 IncompleteImpl, false,
2864 true /*WarnCategoryMethodImpl*/);
2865 }
2866
ImplMethodsVsClassMethods(Scope * S,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool IncompleteImpl)2867 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2868 ObjCContainerDecl* CDecl,
2869 bool IncompleteImpl) {
2870 SelectorSet InsMap;
2871 // Check and see if instance methods in class interface have been
2872 // implemented in the implementation class.
2873 for (const auto *I : IMPDecl->instance_methods())
2874 InsMap.insert(I->getSelector());
2875
2876 // Add the selectors for getters/setters of @dynamic properties.
2877 for (const auto *PImpl : IMPDecl->property_impls()) {
2878 // We only care about @dynamic implementations.
2879 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2880 continue;
2881
2882 const auto *P = PImpl->getPropertyDecl();
2883 if (!P) continue;
2884
2885 InsMap.insert(P->getGetterName());
2886 if (!P->getSetterName().isNull())
2887 InsMap.insert(P->getSetterName());
2888 }
2889
2890 // Check and see if properties declared in the interface have either 1)
2891 // an implementation or 2) there is a @synthesize/@dynamic implementation
2892 // of the property in the @implementation.
2893 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2894 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2895 LangOpts.ObjCRuntime.isNonFragile() &&
2896 !IDecl->isObjCRequiresPropertyDefs();
2897 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2898 }
2899
2900 // Diagnose null-resettable synthesized setters.
2901 diagnoseNullResettableSynthesizedSetters(IMPDecl);
2902
2903 SelectorSet ClsMap;
2904 for (const auto *I : IMPDecl->class_methods())
2905 ClsMap.insert(I->getSelector());
2906
2907 // Check for type conflict of methods declared in a class/protocol and
2908 // its implementation; if any.
2909 SelectorSet InsMapSeen, ClsMapSeen;
2910 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2911 IMPDecl, CDecl,
2912 IncompleteImpl, true);
2913
2914 // check all methods implemented in category against those declared
2915 // in its primary class.
2916 if (ObjCCategoryImplDecl *CatDecl =
2917 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2918 CheckCategoryVsClassMethodMatches(CatDecl);
2919
2920 // Check the protocol list for unimplemented methods in the @implementation
2921 // class.
2922 // Check and see if class methods in class interface have been
2923 // implemented in the implementation class.
2924
2925 LazyProtocolNameSet ExplicitImplProtocols;
2926
2927 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2928 for (auto *PI : I->all_referenced_protocols())
2929 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2930 InsMap, ClsMap, I, ExplicitImplProtocols);
2931 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2932 // For extended class, unimplemented methods in its protocols will
2933 // be reported in the primary class.
2934 if (!C->IsClassExtension()) {
2935 for (auto *P : C->protocols())
2936 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2937 IncompleteImpl, InsMap, ClsMap, CDecl,
2938 ExplicitImplProtocols);
2939 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2940 /*SynthesizeProperties=*/false);
2941 }
2942 } else
2943 llvm_unreachable("invalid ObjCContainerDecl type.");
2944 }
2945
2946 Sema::DeclGroupPtrTy
ActOnForwardClassDeclaration(SourceLocation AtClassLoc,IdentifierInfo ** IdentList,SourceLocation * IdentLocs,ArrayRef<ObjCTypeParamList * > TypeParamLists,unsigned NumElts)2947 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
2948 IdentifierInfo **IdentList,
2949 SourceLocation *IdentLocs,
2950 ArrayRef<ObjCTypeParamList *> TypeParamLists,
2951 unsigned NumElts) {
2952 SmallVector<Decl *, 8> DeclsInGroup;
2953 for (unsigned i = 0; i != NumElts; ++i) {
2954 // Check for another declaration kind with the same name.
2955 NamedDecl *PrevDecl
2956 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
2957 LookupOrdinaryName, ForRedeclaration);
2958 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2959 // GCC apparently allows the following idiom:
2960 //
2961 // typedef NSObject < XCElementTogglerP > XCElementToggler;
2962 // @class XCElementToggler;
2963 //
2964 // Here we have chosen to ignore the forward class declaration
2965 // with a warning. Since this is the implied behavior.
2966 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
2967 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
2968 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
2969 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2970 } else {
2971 // a forward class declaration matching a typedef name of a class refers
2972 // to the underlying class. Just ignore the forward class with a warning
2973 // as this will force the intended behavior which is to lookup the
2974 // typedef name.
2975 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
2976 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
2977 << IdentList[i];
2978 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2979 continue;
2980 }
2981 }
2982 }
2983
2984 // Create a declaration to describe this forward declaration.
2985 ObjCInterfaceDecl *PrevIDecl
2986 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2987
2988 IdentifierInfo *ClassName = IdentList[i];
2989 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
2990 // A previous decl with a different name is because of
2991 // @compatibility_alias, for example:
2992 // \code
2993 // @class NewImage;
2994 // @compatibility_alias OldImage NewImage;
2995 // \endcode
2996 // A lookup for 'OldImage' will return the 'NewImage' decl.
2997 //
2998 // In such a case use the real declaration name, instead of the alias one,
2999 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3000 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3001 // has been aliased.
3002 ClassName = PrevIDecl->getIdentifier();
3003 }
3004
3005 // If this forward declaration has type parameters, compare them with the
3006 // type parameters of the previous declaration.
3007 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3008 if (PrevIDecl && TypeParams) {
3009 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3010 // Check for consistency with the previous declaration.
3011 if (checkTypeParamListConsistency(
3012 *this, PrevTypeParams, TypeParams,
3013 TypeParamListContext::ForwardDeclaration)) {
3014 TypeParams = nullptr;
3015 }
3016 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3017 // The @interface does not have type parameters. Complain.
3018 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3019 << ClassName
3020 << TypeParams->getSourceRange();
3021 Diag(Def->getLocation(), diag::note_defined_here)
3022 << ClassName;
3023
3024 TypeParams = nullptr;
3025 }
3026 }
3027
3028 ObjCInterfaceDecl *IDecl
3029 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3030 ClassName, TypeParams, PrevIDecl,
3031 IdentLocs[i]);
3032 IDecl->setAtEndRange(IdentLocs[i]);
3033
3034 PushOnScopeChains(IDecl, TUScope);
3035 CheckObjCDeclScope(IDecl);
3036 DeclsInGroup.push_back(IDecl);
3037 }
3038
3039 return BuildDeclaratorGroup(DeclsInGroup, false);
3040 }
3041
3042 static bool tryMatchRecordTypes(ASTContext &Context,
3043 Sema::MethodMatchStrategy strategy,
3044 const Type *left, const Type *right);
3045
matchTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,QualType leftQT,QualType rightQT)3046 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3047 QualType leftQT, QualType rightQT) {
3048 const Type *left =
3049 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3050 const Type *right =
3051 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3052
3053 if (left == right) return true;
3054
3055 // If we're doing a strict match, the types have to match exactly.
3056 if (strategy == Sema::MMS_strict) return false;
3057
3058 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3059
3060 // Otherwise, use this absurdly complicated algorithm to try to
3061 // validate the basic, low-level compatibility of the two types.
3062
3063 // As a minimum, require the sizes and alignments to match.
3064 TypeInfo LeftTI = Context.getTypeInfo(left);
3065 TypeInfo RightTI = Context.getTypeInfo(right);
3066 if (LeftTI.Width != RightTI.Width)
3067 return false;
3068
3069 if (LeftTI.Align != RightTI.Align)
3070 return false;
3071
3072 // Consider all the kinds of non-dependent canonical types:
3073 // - functions and arrays aren't possible as return and parameter types
3074
3075 // - vector types of equal size can be arbitrarily mixed
3076 if (isa<VectorType>(left)) return isa<VectorType>(right);
3077 if (isa<VectorType>(right)) return false;
3078
3079 // - references should only match references of identical type
3080 // - structs, unions, and Objective-C objects must match more-or-less
3081 // exactly
3082 // - everything else should be a scalar
3083 if (!left->isScalarType() || !right->isScalarType())
3084 return tryMatchRecordTypes(Context, strategy, left, right);
3085
3086 // Make scalars agree in kind, except count bools as chars, and group
3087 // all non-member pointers together.
3088 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3089 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3090 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3091 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3092 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3093 leftSK = Type::STK_ObjCObjectPointer;
3094 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3095 rightSK = Type::STK_ObjCObjectPointer;
3096
3097 // Note that data member pointers and function member pointers don't
3098 // intermix because of the size differences.
3099
3100 return (leftSK == rightSK);
3101 }
3102
tryMatchRecordTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,const Type * lt,const Type * rt)3103 static bool tryMatchRecordTypes(ASTContext &Context,
3104 Sema::MethodMatchStrategy strategy,
3105 const Type *lt, const Type *rt) {
3106 assert(lt && rt && lt != rt);
3107
3108 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3109 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3110 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3111
3112 // Require union-hood to match.
3113 if (left->isUnion() != right->isUnion()) return false;
3114
3115 // Require an exact match if either is non-POD.
3116 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3117 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3118 return false;
3119
3120 // Require size and alignment to match.
3121 TypeInfo LeftTI = Context.getTypeInfo(lt);
3122 TypeInfo RightTI = Context.getTypeInfo(rt);
3123 if (LeftTI.Width != RightTI.Width)
3124 return false;
3125
3126 if (LeftTI.Align != RightTI.Align)
3127 return false;
3128
3129 // Require fields to match.
3130 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3131 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3132 for (; li != le && ri != re; ++li, ++ri) {
3133 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3134 return false;
3135 }
3136 return (li == le && ri == re);
3137 }
3138
3139 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3140 /// returns true, or false, accordingly.
3141 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
MatchTwoMethodDeclarations(const ObjCMethodDecl * left,const ObjCMethodDecl * right,MethodMatchStrategy strategy)3142 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3143 const ObjCMethodDecl *right,
3144 MethodMatchStrategy strategy) {
3145 if (!matchTypes(Context, strategy, left->getReturnType(),
3146 right->getReturnType()))
3147 return false;
3148
3149 // If either is hidden, it is not considered to match.
3150 if (left->isHidden() || right->isHidden())
3151 return false;
3152
3153 if (getLangOpts().ObjCAutoRefCount &&
3154 (left->hasAttr<NSReturnsRetainedAttr>()
3155 != right->hasAttr<NSReturnsRetainedAttr>() ||
3156 left->hasAttr<NSConsumesSelfAttr>()
3157 != right->hasAttr<NSConsumesSelfAttr>()))
3158 return false;
3159
3160 ObjCMethodDecl::param_const_iterator
3161 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3162 re = right->param_end();
3163
3164 for (; li != le && ri != re; ++li, ++ri) {
3165 assert(ri != right->param_end() && "Param mismatch");
3166 const ParmVarDecl *lparm = *li, *rparm = *ri;
3167
3168 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3169 return false;
3170
3171 if (getLangOpts().ObjCAutoRefCount &&
3172 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3173 return false;
3174 }
3175 return true;
3176 }
3177
isMethodContextSameForKindofLookup(ObjCMethodDecl * Method,ObjCMethodDecl * MethodInList)3178 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3179 ObjCMethodDecl *MethodInList) {
3180 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3181 auto *MethodInListProtocol =
3182 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3183 // If this method belongs to a protocol but the method in list does not, or
3184 // vice versa, we say the context is not the same.
3185 if ((MethodProtocol && !MethodInListProtocol) ||
3186 (!MethodProtocol && MethodInListProtocol))
3187 return false;
3188
3189 if (MethodProtocol && MethodInListProtocol)
3190 return true;
3191
3192 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3193 ObjCInterfaceDecl *MethodInListInterface =
3194 MethodInList->getClassInterface();
3195 return MethodInterface == MethodInListInterface;
3196 }
3197
addMethodToGlobalList(ObjCMethodList * List,ObjCMethodDecl * Method)3198 void Sema::addMethodToGlobalList(ObjCMethodList *List,
3199 ObjCMethodDecl *Method) {
3200 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3201 // inside categories.
3202 if (ObjCCategoryDecl *CD =
3203 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3204 if (!CD->IsClassExtension() && List->getBits() < 2)
3205 List->setBits(List->getBits() + 1);
3206
3207 // If the list is empty, make it a singleton list.
3208 if (List->getMethod() == nullptr) {
3209 List->setMethod(Method);
3210 List->setNext(nullptr);
3211 return;
3212 }
3213
3214 // We've seen a method with this name, see if we have already seen this type
3215 // signature.
3216 ObjCMethodList *Previous = List;
3217 ObjCMethodList *ListWithSameDeclaration = nullptr;
3218 for (; List; Previous = List, List = List->getNext()) {
3219 // If we are building a module, keep all of the methods.
3220 if (getLangOpts().CompilingModule)
3221 continue;
3222
3223 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3224 List->getMethod());
3225 // Looking for method with a type bound requires the correct context exists.
3226 // We need to insert a method into the list if the context is different.
3227 // If the method's declaration matches the list
3228 // a> the method belongs to a different context: we need to insert it, in
3229 // order to emit the availability message, we need to prioritize over
3230 // availability among the methods with the same declaration.
3231 // b> the method belongs to the same context: there is no need to insert a
3232 // new entry.
3233 // If the method's declaration does not match the list, we insert it to the
3234 // end.
3235 if (!SameDeclaration ||
3236 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3237 // Even if two method types do not match, we would like to say
3238 // there is more than one declaration so unavailability/deprecated
3239 // warning is not too noisy.
3240 if (!Method->isDefined())
3241 List->setHasMoreThanOneDecl(true);
3242
3243 // For methods with the same declaration, the one that is deprecated
3244 // should be put in the front for better diagnostics.
3245 if (Method->isDeprecated() && SameDeclaration &&
3246 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3247 ListWithSameDeclaration = List;
3248
3249 if (Method->isUnavailable() && SameDeclaration &&
3250 !ListWithSameDeclaration &&
3251 List->getMethod()->getAvailability() < AR_Deprecated)
3252 ListWithSameDeclaration = List;
3253 continue;
3254 }
3255
3256 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3257
3258 // Propagate the 'defined' bit.
3259 if (Method->isDefined())
3260 PrevObjCMethod->setDefined(true);
3261 else {
3262 // Objective-C doesn't allow an @interface for a class after its
3263 // @implementation. So if Method is not defined and there already is
3264 // an entry for this type signature, Method has to be for a different
3265 // class than PrevObjCMethod.
3266 List->setHasMoreThanOneDecl(true);
3267 }
3268
3269 // If a method is deprecated, push it in the global pool.
3270 // This is used for better diagnostics.
3271 if (Method->isDeprecated()) {
3272 if (!PrevObjCMethod->isDeprecated())
3273 List->setMethod(Method);
3274 }
3275 // If the new method is unavailable, push it into global pool
3276 // unless previous one is deprecated.
3277 if (Method->isUnavailable()) {
3278 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3279 List->setMethod(Method);
3280 }
3281
3282 return;
3283 }
3284
3285 // We have a new signature for an existing method - add it.
3286 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3287 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3288
3289 // We insert it right before ListWithSameDeclaration.
3290 if (ListWithSameDeclaration) {
3291 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3292 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3293 ListWithSameDeclaration->setMethod(Method);
3294 ListWithSameDeclaration->setNext(List);
3295 return;
3296 }
3297
3298 Previous->setNext(new (Mem) ObjCMethodList(Method));
3299 }
3300
3301 /// \brief Read the contents of the method pool for a given selector from
3302 /// external storage.
ReadMethodPool(Selector Sel)3303 void Sema::ReadMethodPool(Selector Sel) {
3304 assert(ExternalSource && "We need an external AST source");
3305 ExternalSource->ReadMethodPool(Sel);
3306 }
3307
updateOutOfDateSelector(Selector Sel)3308 void Sema::updateOutOfDateSelector(Selector Sel) {
3309 if (!ExternalSource)
3310 return;
3311 ExternalSource->updateOutOfDateSelector(Sel);
3312 }
3313
AddMethodToGlobalPool(ObjCMethodDecl * Method,bool impl,bool instance)3314 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3315 bool instance) {
3316 // Ignore methods of invalid containers.
3317 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3318 return;
3319
3320 if (ExternalSource)
3321 ReadMethodPool(Method->getSelector());
3322
3323 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3324 if (Pos == MethodPool.end())
3325 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3326 GlobalMethods())).first;
3327
3328 Method->setDefined(impl);
3329
3330 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3331 addMethodToGlobalList(&Entry, Method);
3332 }
3333
3334 /// Determines if this is an "acceptable" loose mismatch in the global
3335 /// method pool. This exists mostly as a hack to get around certain
3336 /// global mismatches which we can't afford to make warnings / errors.
3337 /// Really, what we want is a way to take a method out of the global
3338 /// method pool.
isAcceptableMethodMismatch(ObjCMethodDecl * chosen,ObjCMethodDecl * other)3339 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3340 ObjCMethodDecl *other) {
3341 if (!chosen->isInstanceMethod())
3342 return false;
3343
3344 Selector sel = chosen->getSelector();
3345 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3346 return false;
3347
3348 // Don't complain about mismatches for -length if the method we
3349 // chose has an integral result type.
3350 return (chosen->getReturnType()->isIntegerType());
3351 }
3352
3353 /// Return true if the given method is wthin the type bound.
FilterMethodsByTypeBound(ObjCMethodDecl * Method,const ObjCObjectType * TypeBound)3354 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3355 const ObjCObjectType *TypeBound) {
3356 if (!TypeBound)
3357 return true;
3358
3359 if (TypeBound->isObjCId())
3360 // FIXME: should we handle the case of bounding to id<A, B> differently?
3361 return true;
3362
3363 auto *BoundInterface = TypeBound->getInterface();
3364 assert(BoundInterface && "unexpected object type!");
3365
3366 // Check if the Method belongs to a protocol. We should allow any method
3367 // defined in any protocol, because any subclass could adopt the protocol.
3368 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3369 if (MethodProtocol) {
3370 return true;
3371 }
3372
3373 // If the Method belongs to a class, check if it belongs to the class
3374 // hierarchy of the class bound.
3375 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3376 // We allow methods declared within classes that are part of the hierarchy
3377 // of the class bound (superclass of, subclass of, or the same as the class
3378 // bound).
3379 return MethodInterface == BoundInterface ||
3380 MethodInterface->isSuperClassOf(BoundInterface) ||
3381 BoundInterface->isSuperClassOf(MethodInterface);
3382 }
3383 llvm_unreachable("unknow method context");
3384 }
3385
3386 /// We first select the type of the method: Instance or Factory, then collect
3387 /// all methods with that type.
CollectMultipleMethodsInGlobalPool(Selector Sel,SmallVectorImpl<ObjCMethodDecl * > & Methods,bool InstanceFirst,bool CheckTheOther,const ObjCObjectType * TypeBound)3388 bool Sema::CollectMultipleMethodsInGlobalPool(
3389 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3390 bool InstanceFirst, bool CheckTheOther,
3391 const ObjCObjectType *TypeBound) {
3392 if (ExternalSource)
3393 ReadMethodPool(Sel);
3394
3395 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3396 if (Pos == MethodPool.end())
3397 return false;
3398
3399 // Gather the non-hidden methods.
3400 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3401 Pos->second.second;
3402 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3403 if (M->getMethod() && !M->getMethod()->isHidden()) {
3404 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3405 Methods.push_back(M->getMethod());
3406 }
3407
3408 // Return if we find any method with the desired kind.
3409 if (!Methods.empty())
3410 return Methods.size() > 1;
3411
3412 if (!CheckTheOther)
3413 return false;
3414
3415 // Gather the other kind.
3416 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3417 Pos->second.first;
3418 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3419 if (M->getMethod() && !M->getMethod()->isHidden()) {
3420 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3421 Methods.push_back(M->getMethod());
3422 }
3423
3424 return Methods.size() > 1;
3425 }
3426
AreMultipleMethodsInGlobalPool(Selector Sel,ObjCMethodDecl * BestMethod,SourceRange R,bool receiverIdOrClass,SmallVectorImpl<ObjCMethodDecl * > & Methods)3427 bool Sema::AreMultipleMethodsInGlobalPool(
3428 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3429 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3430 // Diagnose finding more than one method in global pool.
3431 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3432 FilteredMethods.push_back(BestMethod);
3433
3434 for (auto *M : Methods)
3435 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3436 FilteredMethods.push_back(M);
3437
3438 if (FilteredMethods.size() > 1)
3439 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3440 receiverIdOrClass);
3441
3442 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3443 // Test for no method in the pool which should not trigger any warning by
3444 // caller.
3445 if (Pos == MethodPool.end())
3446 return true;
3447 ObjCMethodList &MethList =
3448 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3449 return MethList.hasMoreThanOneDecl();
3450 }
3451
LookupMethodInGlobalPool(Selector Sel,SourceRange R,bool receiverIdOrClass,bool instance)3452 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3453 bool receiverIdOrClass,
3454 bool instance) {
3455 if (ExternalSource)
3456 ReadMethodPool(Sel);
3457
3458 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3459 if (Pos == MethodPool.end())
3460 return nullptr;
3461
3462 // Gather the non-hidden methods.
3463 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3464 SmallVector<ObjCMethodDecl *, 4> Methods;
3465 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3466 if (M->getMethod() && !M->getMethod()->isHidden())
3467 return M->getMethod();
3468 }
3469 return nullptr;
3470 }
3471
DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl * > & Methods,Selector Sel,SourceRange R,bool receiverIdOrClass)3472 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3473 Selector Sel, SourceRange R,
3474 bool receiverIdOrClass) {
3475 // We found multiple methods, so we may have to complain.
3476 bool issueDiagnostic = false, issueError = false;
3477
3478 // We support a warning which complains about *any* difference in
3479 // method signature.
3480 bool strictSelectorMatch =
3481 receiverIdOrClass &&
3482 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3483 if (strictSelectorMatch) {
3484 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3485 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3486 issueDiagnostic = true;
3487 break;
3488 }
3489 }
3490 }
3491
3492 // If we didn't see any strict differences, we won't see any loose
3493 // differences. In ARC, however, we also need to check for loose
3494 // mismatches, because most of them are errors.
3495 if (!strictSelectorMatch ||
3496 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3497 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3498 // This checks if the methods differ in type mismatch.
3499 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3500 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3501 issueDiagnostic = true;
3502 if (getLangOpts().ObjCAutoRefCount)
3503 issueError = true;
3504 break;
3505 }
3506 }
3507
3508 if (issueDiagnostic) {
3509 if (issueError)
3510 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3511 else if (strictSelectorMatch)
3512 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3513 else
3514 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3515
3516 Diag(Methods[0]->getLocStart(),
3517 issueError ? diag::note_possibility : diag::note_using)
3518 << Methods[0]->getSourceRange();
3519 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3520 Diag(Methods[I]->getLocStart(), diag::note_also_found)
3521 << Methods[I]->getSourceRange();
3522 }
3523 }
3524 }
3525
LookupImplementedMethodInGlobalPool(Selector Sel)3526 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3527 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3528 if (Pos == MethodPool.end())
3529 return nullptr;
3530
3531 GlobalMethods &Methods = Pos->second;
3532 for (const ObjCMethodList *Method = &Methods.first; Method;
3533 Method = Method->getNext())
3534 if (Method->getMethod() &&
3535 (Method->getMethod()->isDefined() ||
3536 Method->getMethod()->isPropertyAccessor()))
3537 return Method->getMethod();
3538
3539 for (const ObjCMethodList *Method = &Methods.second; Method;
3540 Method = Method->getNext())
3541 if (Method->getMethod() &&
3542 (Method->getMethod()->isDefined() ||
3543 Method->getMethod()->isPropertyAccessor()))
3544 return Method->getMethod();
3545 return nullptr;
3546 }
3547
3548 static void
HelperSelectorsForTypoCorrection(SmallVectorImpl<const ObjCMethodDecl * > & BestMethod,StringRef Typo,const ObjCMethodDecl * Method)3549 HelperSelectorsForTypoCorrection(
3550 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3551 StringRef Typo, const ObjCMethodDecl * Method) {
3552 const unsigned MaxEditDistance = 1;
3553 unsigned BestEditDistance = MaxEditDistance + 1;
3554 std::string MethodName = Method->getSelector().getAsString();
3555
3556 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3557 if (MinPossibleEditDistance > 0 &&
3558 Typo.size() / MinPossibleEditDistance < 1)
3559 return;
3560 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3561 if (EditDistance > MaxEditDistance)
3562 return;
3563 if (EditDistance == BestEditDistance)
3564 BestMethod.push_back(Method);
3565 else if (EditDistance < BestEditDistance) {
3566 BestMethod.clear();
3567 BestMethod.push_back(Method);
3568 }
3569 }
3570
HelperIsMethodInObjCType(Sema & S,Selector Sel,QualType ObjectType)3571 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3572 QualType ObjectType) {
3573 if (ObjectType.isNull())
3574 return true;
3575 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3576 return true;
3577 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3578 nullptr;
3579 }
3580
3581 const ObjCMethodDecl *
SelectorsForTypoCorrection(Selector Sel,QualType ObjectType)3582 Sema::SelectorsForTypoCorrection(Selector Sel,
3583 QualType ObjectType) {
3584 unsigned NumArgs = Sel.getNumArgs();
3585 SmallVector<const ObjCMethodDecl *, 8> Methods;
3586 bool ObjectIsId = true, ObjectIsClass = true;
3587 if (ObjectType.isNull())
3588 ObjectIsId = ObjectIsClass = false;
3589 else if (!ObjectType->isObjCObjectPointerType())
3590 return nullptr;
3591 else if (const ObjCObjectPointerType *ObjCPtr =
3592 ObjectType->getAsObjCInterfacePointerType()) {
3593 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3594 ObjectIsId = ObjectIsClass = false;
3595 }
3596 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3597 ObjectIsClass = false;
3598 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3599 ObjectIsId = false;
3600 else
3601 return nullptr;
3602
3603 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3604 e = MethodPool.end(); b != e; b++) {
3605 // instance methods
3606 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3607 if (M->getMethod() &&
3608 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3609 (M->getMethod()->getSelector() != Sel)) {
3610 if (ObjectIsId)
3611 Methods.push_back(M->getMethod());
3612 else if (!ObjectIsClass &&
3613 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3614 ObjectType))
3615 Methods.push_back(M->getMethod());
3616 }
3617 // class methods
3618 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3619 if (M->getMethod() &&
3620 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3621 (M->getMethod()->getSelector() != Sel)) {
3622 if (ObjectIsClass)
3623 Methods.push_back(M->getMethod());
3624 else if (!ObjectIsId &&
3625 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3626 ObjectType))
3627 Methods.push_back(M->getMethod());
3628 }
3629 }
3630
3631 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3632 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3633 HelperSelectorsForTypoCorrection(SelectedMethods,
3634 Sel.getAsString(), Methods[i]);
3635 }
3636 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3637 }
3638
3639 /// DiagnoseDuplicateIvars -
3640 /// Check for duplicate ivars in the entire class at the start of
3641 /// \@implementation. This becomes necesssary because class extension can
3642 /// add ivars to a class in random order which will not be known until
3643 /// class's \@implementation is seen.
DiagnoseDuplicateIvars(ObjCInterfaceDecl * ID,ObjCInterfaceDecl * SID)3644 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3645 ObjCInterfaceDecl *SID) {
3646 for (auto *Ivar : ID->ivars()) {
3647 if (Ivar->isInvalidDecl())
3648 continue;
3649 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3650 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3651 if (prevIvar) {
3652 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3653 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3654 Ivar->setInvalidDecl();
3655 }
3656 }
3657 }
3658 }
3659
3660 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
DiagnoseWeakIvars(Sema & S,ObjCImplementationDecl * ID)3661 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3662 if (S.getLangOpts().ObjCWeak) return;
3663
3664 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3665 ivar; ivar = ivar->getNextIvar()) {
3666 if (ivar->isInvalidDecl()) continue;
3667 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3668 if (S.getLangOpts().ObjCWeakRuntime) {
3669 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3670 } else {
3671 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3672 }
3673 }
3674 }
3675 }
3676
getObjCContainerKind() const3677 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3678 switch (CurContext->getDeclKind()) {
3679 case Decl::ObjCInterface:
3680 return Sema::OCK_Interface;
3681 case Decl::ObjCProtocol:
3682 return Sema::OCK_Protocol;
3683 case Decl::ObjCCategory:
3684 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3685 return Sema::OCK_ClassExtension;
3686 return Sema::OCK_Category;
3687 case Decl::ObjCImplementation:
3688 return Sema::OCK_Implementation;
3689 case Decl::ObjCCategoryImpl:
3690 return Sema::OCK_CategoryImplementation;
3691
3692 default:
3693 return Sema::OCK_None;
3694 }
3695 }
3696
3697 // Note: For class/category implementations, allMethods is always null.
ActOnAtEnd(Scope * S,SourceRange AtEnd,ArrayRef<Decl * > allMethods,ArrayRef<DeclGroupPtrTy> allTUVars)3698 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3699 ArrayRef<DeclGroupPtrTy> allTUVars) {
3700 if (getObjCContainerKind() == Sema::OCK_None)
3701 return nullptr;
3702
3703 assert(AtEnd.isValid() && "Invalid location for '@end'");
3704
3705 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3706 Decl *ClassDecl = cast<Decl>(OCD);
3707
3708 bool isInterfaceDeclKind =
3709 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3710 || isa<ObjCProtocolDecl>(ClassDecl);
3711 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3712
3713 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3714 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3715 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3716
3717 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3718 ObjCMethodDecl *Method =
3719 cast_or_null<ObjCMethodDecl>(allMethods[i]);
3720
3721 if (!Method) continue; // Already issued a diagnostic.
3722 if (Method->isInstanceMethod()) {
3723 /// Check for instance method of the same name with incompatible types
3724 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3725 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3726 : false;
3727 if ((isInterfaceDeclKind && PrevMethod && !match)
3728 || (checkIdenticalMethods && match)) {
3729 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3730 << Method->getDeclName();
3731 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3732 Method->setInvalidDecl();
3733 } else {
3734 if (PrevMethod) {
3735 Method->setAsRedeclaration(PrevMethod);
3736 if (!Context.getSourceManager().isInSystemHeader(
3737 Method->getLocation()))
3738 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3739 << Method->getDeclName();
3740 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3741 }
3742 InsMap[Method->getSelector()] = Method;
3743 /// The following allows us to typecheck messages to "id".
3744 AddInstanceMethodToGlobalPool(Method);
3745 }
3746 } else {
3747 /// Check for class method of the same name with incompatible types
3748 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3749 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3750 : false;
3751 if ((isInterfaceDeclKind && PrevMethod && !match)
3752 || (checkIdenticalMethods && match)) {
3753 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3754 << Method->getDeclName();
3755 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3756 Method->setInvalidDecl();
3757 } else {
3758 if (PrevMethod) {
3759 Method->setAsRedeclaration(PrevMethod);
3760 if (!Context.getSourceManager().isInSystemHeader(
3761 Method->getLocation()))
3762 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3763 << Method->getDeclName();
3764 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3765 }
3766 ClsMap[Method->getSelector()] = Method;
3767 AddFactoryMethodToGlobalPool(Method);
3768 }
3769 }
3770 }
3771 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3772 // Nothing to do here.
3773 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3774 // Categories are used to extend the class by declaring new methods.
3775 // By the same token, they are also used to add new properties. No
3776 // need to compare the added property to those in the class.
3777
3778 if (C->IsClassExtension()) {
3779 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3780 DiagnoseClassExtensionDupMethods(C, CCPrimary);
3781 }
3782 }
3783 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3784 if (CDecl->getIdentifier())
3785 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3786 // user-defined setter/getter. It also synthesizes setter/getter methods
3787 // and adds them to the DeclContext and global method pools.
3788 for (auto *I : CDecl->properties())
3789 ProcessPropertyDecl(I);
3790 CDecl->setAtEndRange(AtEnd);
3791 }
3792 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3793 IC->setAtEndRange(AtEnd);
3794 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3795 // Any property declared in a class extension might have user
3796 // declared setter or getter in current class extension or one
3797 // of the other class extensions. Mark them as synthesized as
3798 // property will be synthesized when property with same name is
3799 // seen in the @implementation.
3800 for (const auto *Ext : IDecl->visible_extensions()) {
3801 for (const auto *Property : Ext->instance_properties()) {
3802 // Skip over properties declared @dynamic
3803 if (const ObjCPropertyImplDecl *PIDecl
3804 = IC->FindPropertyImplDecl(Property->getIdentifier(),
3805 Property->getQueryKind()))
3806 if (PIDecl->getPropertyImplementation()
3807 == ObjCPropertyImplDecl::Dynamic)
3808 continue;
3809
3810 for (const auto *Ext : IDecl->visible_extensions()) {
3811 if (ObjCMethodDecl *GetterMethod
3812 = Ext->getInstanceMethod(Property->getGetterName()))
3813 GetterMethod->setPropertyAccessor(true);
3814 if (!Property->isReadOnly())
3815 if (ObjCMethodDecl *SetterMethod
3816 = Ext->getInstanceMethod(Property->getSetterName()))
3817 SetterMethod->setPropertyAccessor(true);
3818 }
3819 }
3820 }
3821 ImplMethodsVsClassMethods(S, IC, IDecl);
3822 AtomicPropertySetterGetterRules(IC, IDecl);
3823 DiagnoseOwningPropertyGetterSynthesis(IC);
3824 DiagnoseUnusedBackingIvarInAccessor(S, IC);
3825 if (IDecl->hasDesignatedInitializers())
3826 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
3827 DiagnoseWeakIvars(*this, IC);
3828
3829 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
3830 if (IDecl->getSuperClass() == nullptr) {
3831 // This class has no superclass, so check that it has been marked with
3832 // __attribute((objc_root_class)).
3833 if (!HasRootClassAttr) {
3834 SourceLocation DeclLoc(IDecl->getLocation());
3835 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
3836 Diag(DeclLoc, diag::warn_objc_root_class_missing)
3837 << IDecl->getIdentifier();
3838 // See if NSObject is in the current scope, and if it is, suggest
3839 // adding " : NSObject " to the class declaration.
3840 NamedDecl *IF = LookupSingleName(TUScope,
3841 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
3842 DeclLoc, LookupOrdinaryName);
3843 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
3844 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
3845 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
3846 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
3847 } else {
3848 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
3849 }
3850 }
3851 } else if (HasRootClassAttr) {
3852 // Complain that only root classes may have this attribute.
3853 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
3854 }
3855
3856 if (LangOpts.ObjCRuntime.isNonFragile()) {
3857 while (IDecl->getSuperClass()) {
3858 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
3859 IDecl = IDecl->getSuperClass();
3860 }
3861 }
3862 }
3863 SetIvarInitializers(IC);
3864 } else if (ObjCCategoryImplDecl* CatImplClass =
3865 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
3866 CatImplClass->setAtEndRange(AtEnd);
3867
3868 // Find category interface decl and then check that all methods declared
3869 // in this interface are implemented in the category @implementation.
3870 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
3871 if (ObjCCategoryDecl *Cat
3872 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
3873 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
3874 }
3875 }
3876 }
3877 if (isInterfaceDeclKind) {
3878 // Reject invalid vardecls.
3879 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
3880 DeclGroupRef DG = allTUVars[i].get();
3881 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
3882 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
3883 if (!VDecl->hasExternalStorage())
3884 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
3885 }
3886 }
3887 }
3888 ActOnObjCContainerFinishDefinition();
3889
3890 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
3891 DeclGroupRef DG = allTUVars[i].get();
3892 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
3893 (*I)->setTopLevelDeclInObjCContainer();
3894 Consumer.HandleTopLevelDeclInObjCContainer(DG);
3895 }
3896
3897 ActOnDocumentableDecl(ClassDecl);
3898 return ClassDecl;
3899 }
3900
3901 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
3902 /// objective-c's type qualifier from the parser version of the same info.
3903 static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)3904 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
3905 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
3906 }
3907
3908 /// \brief Check whether the declared result type of the given Objective-C
3909 /// method declaration is compatible with the method's class.
3910 ///
3911 static Sema::ResultTypeCompatibilityKind
CheckRelatedResultTypeCompatibility(Sema & S,ObjCMethodDecl * Method,ObjCInterfaceDecl * CurrentClass)3912 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
3913 ObjCInterfaceDecl *CurrentClass) {
3914 QualType ResultType = Method->getReturnType();
3915
3916 // If an Objective-C method inherits its related result type, then its
3917 // declared result type must be compatible with its own class type. The
3918 // declared result type is compatible if:
3919 if (const ObjCObjectPointerType *ResultObjectType
3920 = ResultType->getAs<ObjCObjectPointerType>()) {
3921 // - it is id or qualified id, or
3922 if (ResultObjectType->isObjCIdType() ||
3923 ResultObjectType->isObjCQualifiedIdType())
3924 return Sema::RTC_Compatible;
3925
3926 if (CurrentClass) {
3927 if (ObjCInterfaceDecl *ResultClass
3928 = ResultObjectType->getInterfaceDecl()) {
3929 // - it is the same as the method's class type, or
3930 if (declaresSameEntity(CurrentClass, ResultClass))
3931 return Sema::RTC_Compatible;
3932
3933 // - it is a superclass of the method's class type
3934 if (ResultClass->isSuperClassOf(CurrentClass))
3935 return Sema::RTC_Compatible;
3936 }
3937 } else {
3938 // Any Objective-C pointer type might be acceptable for a protocol
3939 // method; we just don't know.
3940 return Sema::RTC_Unknown;
3941 }
3942 }
3943
3944 return Sema::RTC_Incompatible;
3945 }
3946
3947 namespace {
3948 /// A helper class for searching for methods which a particular method
3949 /// overrides.
3950 class OverrideSearch {
3951 public:
3952 Sema &S;
3953 ObjCMethodDecl *Method;
3954 llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
3955 bool Recursive;
3956
3957 public:
OverrideSearch(Sema & S,ObjCMethodDecl * method)3958 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
3959 Selector selector = method->getSelector();
3960
3961 // Bypass this search if we've never seen an instance/class method
3962 // with this selector before.
3963 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
3964 if (it == S.MethodPool.end()) {
3965 if (!S.getExternalSource()) return;
3966 S.ReadMethodPool(selector);
3967
3968 it = S.MethodPool.find(selector);
3969 if (it == S.MethodPool.end())
3970 return;
3971 }
3972 ObjCMethodList &list =
3973 method->isInstanceMethod() ? it->second.first : it->second.second;
3974 if (!list.getMethod()) return;
3975
3976 ObjCContainerDecl *container
3977 = cast<ObjCContainerDecl>(method->getDeclContext());
3978
3979 // Prevent the search from reaching this container again. This is
3980 // important with categories, which override methods from the
3981 // interface and each other.
3982 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
3983 searchFromContainer(container);
3984 if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
3985 searchFromContainer(Interface);
3986 } else {
3987 searchFromContainer(container);
3988 }
3989 }
3990
3991 typedef llvm::SmallPtrSetImpl<ObjCMethodDecl*>::iterator iterator;
begin() const3992 iterator begin() const { return Overridden.begin(); }
end() const3993 iterator end() const { return Overridden.end(); }
3994
3995 private:
searchFromContainer(ObjCContainerDecl * container)3996 void searchFromContainer(ObjCContainerDecl *container) {
3997 if (container->isInvalidDecl()) return;
3998
3999 switch (container->getDeclKind()) {
4000 #define OBJCCONTAINER(type, base) \
4001 case Decl::type: \
4002 searchFrom(cast<type##Decl>(container)); \
4003 break;
4004 #define ABSTRACT_DECL(expansion)
4005 #define DECL(type, base) \
4006 case Decl::type:
4007 #include "clang/AST/DeclNodes.inc"
4008 llvm_unreachable("not an ObjC container!");
4009 }
4010 }
4011
searchFrom(ObjCProtocolDecl * protocol)4012 void searchFrom(ObjCProtocolDecl *protocol) {
4013 if (!protocol->hasDefinition())
4014 return;
4015
4016 // A method in a protocol declaration overrides declarations from
4017 // referenced ("parent") protocols.
4018 search(protocol->getReferencedProtocols());
4019 }
4020
searchFrom(ObjCCategoryDecl * category)4021 void searchFrom(ObjCCategoryDecl *category) {
4022 // A method in a category declaration overrides declarations from
4023 // the main class and from protocols the category references.
4024 // The main class is handled in the constructor.
4025 search(category->getReferencedProtocols());
4026 }
4027
searchFrom(ObjCCategoryImplDecl * impl)4028 void searchFrom(ObjCCategoryImplDecl *impl) {
4029 // A method in a category definition that has a category
4030 // declaration overrides declarations from the category
4031 // declaration.
4032 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4033 search(category);
4034 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4035 search(Interface);
4036
4037 // Otherwise it overrides declarations from the class.
4038 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4039 search(Interface);
4040 }
4041 }
4042
searchFrom(ObjCInterfaceDecl * iface)4043 void searchFrom(ObjCInterfaceDecl *iface) {
4044 // A method in a class declaration overrides declarations from
4045 if (!iface->hasDefinition())
4046 return;
4047
4048 // - categories,
4049 for (auto *Cat : iface->known_categories())
4050 search(Cat);
4051
4052 // - the super class, and
4053 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4054 search(super);
4055
4056 // - any referenced protocols.
4057 search(iface->getReferencedProtocols());
4058 }
4059
searchFrom(ObjCImplementationDecl * impl)4060 void searchFrom(ObjCImplementationDecl *impl) {
4061 // A method in a class implementation overrides declarations from
4062 // the class interface.
4063 if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4064 search(Interface);
4065 }
4066
search(const ObjCProtocolList & protocols)4067 void search(const ObjCProtocolList &protocols) {
4068 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4069 i != e; ++i)
4070 search(*i);
4071 }
4072
search(ObjCContainerDecl * container)4073 void search(ObjCContainerDecl *container) {
4074 // Check for a method in this container which matches this selector.
4075 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4076 Method->isInstanceMethod(),
4077 /*AllowHidden=*/true);
4078
4079 // If we find one, record it and bail out.
4080 if (meth) {
4081 Overridden.insert(meth);
4082 return;
4083 }
4084
4085 // Otherwise, search for methods that a hypothetical method here
4086 // would have overridden.
4087
4088 // Note that we're now in a recursive case.
4089 Recursive = true;
4090
4091 searchFromContainer(container);
4092 }
4093 };
4094 } // end anonymous namespace
4095
CheckObjCMethodOverrides(ObjCMethodDecl * ObjCMethod,ObjCInterfaceDecl * CurrentClass,ResultTypeCompatibilityKind RTC)4096 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4097 ObjCInterfaceDecl *CurrentClass,
4098 ResultTypeCompatibilityKind RTC) {
4099 // Search for overridden methods and merge information down from them.
4100 OverrideSearch overrides(*this, ObjCMethod);
4101 // Keep track if the method overrides any method in the class's base classes,
4102 // its protocols, or its categories' protocols; we will keep that info
4103 // in the ObjCMethodDecl.
4104 // For this info, a method in an implementation is not considered as
4105 // overriding the same method in the interface or its categories.
4106 bool hasOverriddenMethodsInBaseOrProtocol = false;
4107 for (OverrideSearch::iterator
4108 i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4109 ObjCMethodDecl *overridden = *i;
4110
4111 if (!hasOverriddenMethodsInBaseOrProtocol) {
4112 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4113 CurrentClass != overridden->getClassInterface() ||
4114 overridden->isOverriding()) {
4115 hasOverriddenMethodsInBaseOrProtocol = true;
4116
4117 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4118 // OverrideSearch will return as "overridden" the same method in the
4119 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4120 // check whether a category of a base class introduced a method with the
4121 // same selector, after the interface method declaration.
4122 // To avoid unnecessary lookups in the majority of cases, we use the
4123 // extra info bits in GlobalMethodPool to check whether there were any
4124 // category methods with this selector.
4125 GlobalMethodPool::iterator It =
4126 MethodPool.find(ObjCMethod->getSelector());
4127 if (It != MethodPool.end()) {
4128 ObjCMethodList &List =
4129 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4130 unsigned CategCount = List.getBits();
4131 if (CategCount > 0) {
4132 // If the method is in a category we'll do lookup if there were at
4133 // least 2 category methods recorded, otherwise only one will do.
4134 if (CategCount > 1 ||
4135 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4136 OverrideSearch overrides(*this, overridden);
4137 for (OverrideSearch::iterator
4138 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4139 ObjCMethodDecl *SuperOverridden = *OI;
4140 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4141 CurrentClass != SuperOverridden->getClassInterface()) {
4142 hasOverriddenMethodsInBaseOrProtocol = true;
4143 overridden->setOverriding(true);
4144 break;
4145 }
4146 }
4147 }
4148 }
4149 }
4150 }
4151 }
4152
4153 // Propagate down the 'related result type' bit from overridden methods.
4154 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4155 ObjCMethod->SetRelatedResultType();
4156
4157 // Then merge the declarations.
4158 mergeObjCMethodDecls(ObjCMethod, overridden);
4159
4160 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4161 continue; // Conflicting properties are detected elsewhere.
4162
4163 // Check for overriding methods
4164 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4165 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4166 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4167 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4168
4169 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4170 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4171 !overridden->isImplicit() /* not meant for properties */) {
4172 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4173 E = ObjCMethod->param_end();
4174 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4175 PrevE = overridden->param_end();
4176 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4177 assert(PrevI != overridden->param_end() && "Param mismatch");
4178 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4179 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4180 // If type of argument of method in this class does not match its
4181 // respective argument type in the super class method, issue warning;
4182 if (!Context.typesAreCompatible(T1, T2)) {
4183 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4184 << T1 << T2;
4185 Diag(overridden->getLocation(), diag::note_previous_declaration);
4186 break;
4187 }
4188 }
4189 }
4190 }
4191
4192 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4193 }
4194
4195 /// Merge type nullability from for a redeclaration of the same entity,
4196 /// producing the updated type of the redeclared entity.
mergeTypeNullabilityForRedecl(Sema & S,SourceLocation loc,QualType type,bool usesCSKeyword,SourceLocation prevLoc,QualType prevType,bool prevUsesCSKeyword)4197 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4198 QualType type,
4199 bool usesCSKeyword,
4200 SourceLocation prevLoc,
4201 QualType prevType,
4202 bool prevUsesCSKeyword) {
4203 // Determine the nullability of both types.
4204 auto nullability = type->getNullability(S.Context);
4205 auto prevNullability = prevType->getNullability(S.Context);
4206
4207 // Easy case: both have nullability.
4208 if (nullability.hasValue() == prevNullability.hasValue()) {
4209 // Neither has nullability; continue.
4210 if (!nullability)
4211 return type;
4212
4213 // The nullabilities are equivalent; do nothing.
4214 if (*nullability == *prevNullability)
4215 return type;
4216
4217 // Complain about mismatched nullability.
4218 S.Diag(loc, diag::err_nullability_conflicting)
4219 << DiagNullabilityKind(*nullability, usesCSKeyword)
4220 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4221 return type;
4222 }
4223
4224 // If it's the redeclaration that has nullability, don't change anything.
4225 if (nullability)
4226 return type;
4227
4228 // Otherwise, provide the result with the same nullability.
4229 return S.Context.getAttributedType(
4230 AttributedType::getNullabilityAttrKind(*prevNullability),
4231 type, type);
4232 }
4233
4234 /// Merge information from the declaration of a method in the \@interface
4235 /// (or a category/extension) into the corresponding method in the
4236 /// @implementation (for a class or category).
mergeInterfaceMethodToImpl(Sema & S,ObjCMethodDecl * method,ObjCMethodDecl * prevMethod)4237 static void mergeInterfaceMethodToImpl(Sema &S,
4238 ObjCMethodDecl *method,
4239 ObjCMethodDecl *prevMethod) {
4240 // Merge the objc_requires_super attribute.
4241 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4242 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4243 // merge the attribute into implementation.
4244 method->addAttr(
4245 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4246 method->getLocation()));
4247 }
4248
4249 // Merge nullability of the result type.
4250 QualType newReturnType
4251 = mergeTypeNullabilityForRedecl(
4252 S, method->getReturnTypeSourceRange().getBegin(),
4253 method->getReturnType(),
4254 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4255 prevMethod->getReturnTypeSourceRange().getBegin(),
4256 prevMethod->getReturnType(),
4257 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4258 method->setReturnType(newReturnType);
4259
4260 // Handle each of the parameters.
4261 unsigned numParams = method->param_size();
4262 unsigned numPrevParams = prevMethod->param_size();
4263 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4264 ParmVarDecl *param = method->param_begin()[i];
4265 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4266
4267 // Merge nullability.
4268 QualType newParamType
4269 = mergeTypeNullabilityForRedecl(
4270 S, param->getLocation(), param->getType(),
4271 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4272 prevParam->getLocation(), prevParam->getType(),
4273 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4274 param->setType(newParamType);
4275 }
4276 }
4277
ActOnMethodDeclaration(Scope * S,SourceLocation MethodLoc,SourceLocation EndLoc,tok::TokenKind MethodType,ObjCDeclSpec & ReturnQT,ParsedType ReturnType,ArrayRef<SourceLocation> SelectorLocs,Selector Sel,ObjCArgInfo * ArgInfo,DeclaratorChunk::ParamInfo * CParamInfo,unsigned CNumArgs,AttributeList * AttrList,tok::ObjCKeywordKind MethodDeclKind,bool isVariadic,bool MethodDefinition)4278 Decl *Sema::ActOnMethodDeclaration(
4279 Scope *S,
4280 SourceLocation MethodLoc, SourceLocation EndLoc,
4281 tok::TokenKind MethodType,
4282 ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4283 ArrayRef<SourceLocation> SelectorLocs,
4284 Selector Sel,
4285 // optional arguments. The number of types/arguments is obtained
4286 // from the Sel.getNumArgs().
4287 ObjCArgInfo *ArgInfo,
4288 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
4289 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
4290 bool isVariadic, bool MethodDefinition) {
4291 // Make sure we can establish a context for the method.
4292 if (!CurContext->isObjCContainer()) {
4293 Diag(MethodLoc, diag::error_missing_method_context);
4294 return nullptr;
4295 }
4296 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
4297 Decl *ClassDecl = cast<Decl>(OCD);
4298 QualType resultDeclType;
4299
4300 bool HasRelatedResultType = false;
4301 TypeSourceInfo *ReturnTInfo = nullptr;
4302 if (ReturnType) {
4303 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4304
4305 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4306 return nullptr;
4307
4308 QualType bareResultType = resultDeclType;
4309 (void)AttributedType::stripOuterNullability(bareResultType);
4310 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4311 } else { // get the type for "id".
4312 resultDeclType = Context.getObjCIdType();
4313 Diag(MethodLoc, diag::warn_missing_method_return_type)
4314 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4315 }
4316
4317 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4318 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4319 MethodType == tok::minus, isVariadic,
4320 /*isPropertyAccessor=*/false,
4321 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4322 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4323 : ObjCMethodDecl::Required,
4324 HasRelatedResultType);
4325
4326 SmallVector<ParmVarDecl*, 16> Params;
4327
4328 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4329 QualType ArgType;
4330 TypeSourceInfo *DI;
4331
4332 if (!ArgInfo[i].Type) {
4333 ArgType = Context.getObjCIdType();
4334 DI = nullptr;
4335 } else {
4336 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4337 }
4338
4339 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4340 LookupOrdinaryName, ForRedeclaration);
4341 LookupName(R, S);
4342 if (R.isSingleResult()) {
4343 NamedDecl *PrevDecl = R.getFoundDecl();
4344 if (S->isDeclScope(PrevDecl)) {
4345 Diag(ArgInfo[i].NameLoc,
4346 (MethodDefinition ? diag::warn_method_param_redefinition
4347 : diag::warn_method_param_declaration))
4348 << ArgInfo[i].Name;
4349 Diag(PrevDecl->getLocation(),
4350 diag::note_previous_declaration);
4351 }
4352 }
4353
4354 SourceLocation StartLoc = DI
4355 ? DI->getTypeLoc().getBeginLoc()
4356 : ArgInfo[i].NameLoc;
4357
4358 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4359 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4360 ArgType, DI, SC_None);
4361
4362 Param->setObjCMethodScopeInfo(i);
4363
4364 Param->setObjCDeclQualifier(
4365 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4366
4367 // Apply the attributes to the parameter.
4368 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4369
4370 if (Param->hasAttr<BlocksAttr>()) {
4371 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4372 Param->setInvalidDecl();
4373 }
4374 S->AddDecl(Param);
4375 IdResolver.AddDecl(Param);
4376
4377 Params.push_back(Param);
4378 }
4379
4380 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4381 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4382 QualType ArgType = Param->getType();
4383 if (ArgType.isNull())
4384 ArgType = Context.getObjCIdType();
4385 else
4386 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4387 ArgType = Context.getAdjustedParameterType(ArgType);
4388
4389 Param->setDeclContext(ObjCMethod);
4390 Params.push_back(Param);
4391 }
4392
4393 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4394 ObjCMethod->setObjCDeclQualifier(
4395 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4396
4397 if (AttrList)
4398 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4399
4400 // Add the method now.
4401 const ObjCMethodDecl *PrevMethod = nullptr;
4402 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4403 if (MethodType == tok::minus) {
4404 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4405 ImpDecl->addInstanceMethod(ObjCMethod);
4406 } else {
4407 PrevMethod = ImpDecl->getClassMethod(Sel);
4408 ImpDecl->addClassMethod(ObjCMethod);
4409 }
4410
4411 // Merge information from the @interface declaration into the
4412 // @implementation.
4413 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4414 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4415 ObjCMethod->isInstanceMethod())) {
4416 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4417
4418 // Warn about defining -dealloc in a category.
4419 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4420 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4421 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4422 << ObjCMethod->getDeclName();
4423 }
4424 }
4425 }
4426 } else {
4427 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4428 }
4429
4430 if (PrevMethod) {
4431 // You can never have two method definitions with the same name.
4432 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4433 << ObjCMethod->getDeclName();
4434 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4435 ObjCMethod->setInvalidDecl();
4436 return ObjCMethod;
4437 }
4438
4439 // If this Objective-C method does not have a related result type, but we
4440 // are allowed to infer related result types, try to do so based on the
4441 // method family.
4442 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4443 if (!CurrentClass) {
4444 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4445 CurrentClass = Cat->getClassInterface();
4446 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4447 CurrentClass = Impl->getClassInterface();
4448 else if (ObjCCategoryImplDecl *CatImpl
4449 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4450 CurrentClass = CatImpl->getClassInterface();
4451 }
4452
4453 ResultTypeCompatibilityKind RTC
4454 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4455
4456 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4457
4458 bool ARCError = false;
4459 if (getLangOpts().ObjCAutoRefCount)
4460 ARCError = CheckARCMethodDecl(ObjCMethod);
4461
4462 // Infer the related result type when possible.
4463 if (!ARCError && RTC == Sema::RTC_Compatible &&
4464 !ObjCMethod->hasRelatedResultType() &&
4465 LangOpts.ObjCInferRelatedResultType) {
4466 bool InferRelatedResultType = false;
4467 switch (ObjCMethod->getMethodFamily()) {
4468 case OMF_None:
4469 case OMF_copy:
4470 case OMF_dealloc:
4471 case OMF_finalize:
4472 case OMF_mutableCopy:
4473 case OMF_release:
4474 case OMF_retainCount:
4475 case OMF_initialize:
4476 case OMF_performSelector:
4477 break;
4478
4479 case OMF_alloc:
4480 case OMF_new:
4481 InferRelatedResultType = ObjCMethod->isClassMethod();
4482 break;
4483
4484 case OMF_init:
4485 case OMF_autorelease:
4486 case OMF_retain:
4487 case OMF_self:
4488 InferRelatedResultType = ObjCMethod->isInstanceMethod();
4489 break;
4490 }
4491
4492 if (InferRelatedResultType &&
4493 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4494 ObjCMethod->SetRelatedResultType();
4495 }
4496
4497 ActOnDocumentableDecl(ObjCMethod);
4498
4499 return ObjCMethod;
4500 }
4501
CheckObjCDeclScope(Decl * D)4502 bool Sema::CheckObjCDeclScope(Decl *D) {
4503 // Following is also an error. But it is caused by a missing @end
4504 // and diagnostic is issued elsewhere.
4505 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4506 return false;
4507
4508 // If we switched context to translation unit while we are still lexically in
4509 // an objc container, it means the parser missed emitting an error.
4510 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4511 return false;
4512
4513 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4514 D->setInvalidDecl();
4515
4516 return true;
4517 }
4518
4519 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4520 /// instance variables of ClassName into Decls.
ActOnDefs(Scope * S,Decl * TagD,SourceLocation DeclStart,IdentifierInfo * ClassName,SmallVectorImpl<Decl * > & Decls)4521 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4522 IdentifierInfo *ClassName,
4523 SmallVectorImpl<Decl*> &Decls) {
4524 // Check that ClassName is a valid class
4525 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4526 if (!Class) {
4527 Diag(DeclStart, diag::err_undef_interface) << ClassName;
4528 return;
4529 }
4530 if (LangOpts.ObjCRuntime.isNonFragile()) {
4531 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4532 return;
4533 }
4534
4535 // Collect the instance variables
4536 SmallVector<const ObjCIvarDecl*, 32> Ivars;
4537 Context.DeepCollectObjCIvars(Class, true, Ivars);
4538 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4539 for (unsigned i = 0; i < Ivars.size(); i++) {
4540 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
4541 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4542 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4543 /*FIXME: StartL=*/ID->getLocation(),
4544 ID->getLocation(),
4545 ID->getIdentifier(), ID->getType(),
4546 ID->getBitWidth());
4547 Decls.push_back(FD);
4548 }
4549
4550 // Introduce all of these fields into the appropriate scope.
4551 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4552 D != Decls.end(); ++D) {
4553 FieldDecl *FD = cast<FieldDecl>(*D);
4554 if (getLangOpts().CPlusPlus)
4555 PushOnScopeChains(cast<FieldDecl>(FD), S);
4556 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4557 Record->addDecl(FD);
4558 }
4559 }
4560
4561 /// \brief Build a type-check a new Objective-C exception variable declaration.
BuildObjCExceptionDecl(TypeSourceInfo * TInfo,QualType T,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,bool Invalid)4562 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4563 SourceLocation StartLoc,
4564 SourceLocation IdLoc,
4565 IdentifierInfo *Id,
4566 bool Invalid) {
4567 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4568 // duration shall not be qualified by an address-space qualifier."
4569 // Since all parameters have automatic store duration, they can not have
4570 // an address space.
4571 if (T.getAddressSpace() != 0) {
4572 Diag(IdLoc, diag::err_arg_with_address_space);
4573 Invalid = true;
4574 }
4575
4576 // An @catch parameter must be an unqualified object pointer type;
4577 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4578 if (Invalid) {
4579 // Don't do any further checking.
4580 } else if (T->isDependentType()) {
4581 // Okay: we don't know what this type will instantiate to.
4582 } else if (!T->isObjCObjectPointerType()) {
4583 Invalid = true;
4584 Diag(IdLoc ,diag::err_catch_param_not_objc_type);
4585 } else if (T->isObjCQualifiedIdType()) {
4586 Invalid = true;
4587 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4588 }
4589
4590 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4591 T, TInfo, SC_None);
4592 New->setExceptionVariable(true);
4593
4594 // In ARC, infer 'retaining' for variables of retainable type.
4595 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4596 Invalid = true;
4597
4598 if (Invalid)
4599 New->setInvalidDecl();
4600 return New;
4601 }
4602
ActOnObjCExceptionDecl(Scope * S,Declarator & D)4603 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4604 const DeclSpec &DS = D.getDeclSpec();
4605
4606 // We allow the "register" storage class on exception variables because
4607 // GCC did, but we drop it completely. Any other storage class is an error.
4608 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4609 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4610 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4611 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4612 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4613 << DeclSpec::getSpecifierName(SCS);
4614 }
4615 if (DS.isInlineSpecified())
4616 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4617 << getLangOpts().CPlusPlus1z;
4618 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4619 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4620 diag::err_invalid_thread)
4621 << DeclSpec::getSpecifierName(TSCS);
4622 D.getMutableDeclSpec().ClearStorageClassSpecs();
4623
4624 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4625
4626 // Check that there are no default arguments inside the type of this
4627 // exception object (C++ only).
4628 if (getLangOpts().CPlusPlus)
4629 CheckExtraCXXDefaultArguments(D);
4630
4631 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4632 QualType ExceptionType = TInfo->getType();
4633
4634 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4635 D.getSourceRange().getBegin(),
4636 D.getIdentifierLoc(),
4637 D.getIdentifier(),
4638 D.isInvalidType());
4639
4640 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4641 if (D.getCXXScopeSpec().isSet()) {
4642 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4643 << D.getCXXScopeSpec().getRange();
4644 New->setInvalidDecl();
4645 }
4646
4647 // Add the parameter declaration into this scope.
4648 S->AddDecl(New);
4649 if (D.getIdentifier())
4650 IdResolver.AddDecl(New);
4651
4652 ProcessDeclAttributes(S, New, D);
4653
4654 if (New->hasAttr<BlocksAttr>())
4655 Diag(New->getLocation(), diag::err_block_on_nonlocal);
4656 return New;
4657 }
4658
4659 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4660 /// initialization.
CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl * OI,SmallVectorImpl<ObjCIvarDecl * > & Ivars)4661 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4662 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4663 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4664 Iv= Iv->getNextIvar()) {
4665 QualType QT = Context.getBaseElementType(Iv->getType());
4666 if (QT->isRecordType())
4667 Ivars.push_back(Iv);
4668 }
4669 }
4670
DiagnoseUseOfUnimplementedSelectors()4671 void Sema::DiagnoseUseOfUnimplementedSelectors() {
4672 // Load referenced selectors from the external source.
4673 if (ExternalSource) {
4674 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4675 ExternalSource->ReadReferencedSelectors(Sels);
4676 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4677 ReferencedSelectors[Sels[I].first] = Sels[I].second;
4678 }
4679
4680 // Warning will be issued only when selector table is
4681 // generated (which means there is at lease one implementation
4682 // in the TU). This is to match gcc's behavior.
4683 if (ReferencedSelectors.empty() ||
4684 !Context.AnyObjCImplementation())
4685 return;
4686 for (auto &SelectorAndLocation : ReferencedSelectors) {
4687 Selector Sel = SelectorAndLocation.first;
4688 SourceLocation Loc = SelectorAndLocation.second;
4689 if (!LookupImplementedMethodInGlobalPool(Sel))
4690 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4691 }
4692 }
4693
4694 ObjCIvarDecl *
GetIvarBackingPropertyAccessor(const ObjCMethodDecl * Method,const ObjCPropertyDecl * & PDecl) const4695 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4696 const ObjCPropertyDecl *&PDecl) const {
4697 if (Method->isClassMethod())
4698 return nullptr;
4699 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4700 if (!IDecl)
4701 return nullptr;
4702 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4703 /*shallowCategoryLookup=*/false,
4704 /*followSuper=*/false);
4705 if (!Method || !Method->isPropertyAccessor())
4706 return nullptr;
4707 if ((PDecl = Method->findPropertyDecl()))
4708 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4709 // property backing ivar must belong to property's class
4710 // or be a private ivar in class's implementation.
4711 // FIXME. fix the const-ness issue.
4712 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4713 IV->getIdentifier());
4714 return IV;
4715 }
4716 return nullptr;
4717 }
4718
4719 namespace {
4720 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4721 /// accessor references the backing ivar.
4722 class UnusedBackingIvarChecker :
4723 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4724 public:
4725 Sema &S;
4726 const ObjCMethodDecl *Method;
4727 const ObjCIvarDecl *IvarD;
4728 bool AccessedIvar;
4729 bool InvokedSelfMethod;
4730
UnusedBackingIvarChecker(Sema & S,const ObjCMethodDecl * Method,const ObjCIvarDecl * IvarD)4731 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
4732 const ObjCIvarDecl *IvarD)
4733 : S(S), Method(Method), IvarD(IvarD),
4734 AccessedIvar(false), InvokedSelfMethod(false) {
4735 assert(IvarD);
4736 }
4737
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)4738 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
4739 if (E->getDecl() == IvarD) {
4740 AccessedIvar = true;
4741 return false;
4742 }
4743 return true;
4744 }
4745
VisitObjCMessageExpr(ObjCMessageExpr * E)4746 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
4747 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
4748 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
4749 InvokedSelfMethod = true;
4750 }
4751 return true;
4752 }
4753 };
4754 } // end anonymous namespace
4755
DiagnoseUnusedBackingIvarInAccessor(Scope * S,const ObjCImplementationDecl * ImplD)4756 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4757 const ObjCImplementationDecl *ImplD) {
4758 if (S->hasUnrecoverableErrorOccurred())
4759 return;
4760
4761 for (const auto *CurMethod : ImplD->instance_methods()) {
4762 unsigned DIAG = diag::warn_unused_property_backing_ivar;
4763 SourceLocation Loc = CurMethod->getLocation();
4764 if (Diags.isIgnored(DIAG, Loc))
4765 continue;
4766
4767 const ObjCPropertyDecl *PDecl;
4768 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
4769 if (!IV)
4770 continue;
4771
4772 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
4773 Checker.TraverseStmt(CurMethod->getBody());
4774 if (Checker.AccessedIvar)
4775 continue;
4776
4777 // Do not issue this warning if backing ivar is used somewhere and accessor
4778 // implementation makes a self call. This is to prevent false positive in
4779 // cases where the ivar is accessed by another method that the accessor
4780 // delegates to.
4781 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
4782 Diag(Loc, DIAG) << IV;
4783 Diag(PDecl->getLocation(), diag::note_property_declare);
4784 }
4785 }
4786 }
4787