• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1Compiler-RT
2================================
3
4This directory and its subdirectories contain source code for the compiler
5support routines.
6
7Compiler-RT is open source software. You may freely distribute it under the
8terms of the license agreement found in LICENSE.txt.
9
10================================
11
12This is a replacement library for libgcc.  Each function is contained
13in its own file.  Each function has a corresponding unit test under
14test/Unit.
15
16A rudimentary script to test each file is in the file called
17test/Unit/test.
18
19Here is the specification for this library:
20
21http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22
23Here is a synopsis of the contents of this library:
24
25typedef      int si_int;
26typedef unsigned su_int;
27
28typedef          long long di_int;
29typedef unsigned long long du_int;
30
31// Integral bit manipulation
32
33di_int __ashldi3(di_int a, si_int b);      // a << b
34ti_int __ashlti3(ti_int a, si_int b);      // a << b
35
36di_int __ashrdi3(di_int a, si_int b);      // a >> b  arithmetic (sign fill)
37ti_int __ashrti3(ti_int a, si_int b);      // a >> b  arithmetic (sign fill)
38di_int __lshrdi3(di_int a, si_int b);      // a >> b  logical    (zero fill)
39ti_int __lshrti3(ti_int a, si_int b);      // a >> b  logical    (zero fill)
40
41si_int __clzsi2(si_int a);  // count leading zeros
42si_int __clzdi2(di_int a);  // count leading zeros
43si_int __clzti2(ti_int a);  // count leading zeros
44si_int __ctzsi2(si_int a);  // count trailing zeros
45si_int __ctzdi2(di_int a);  // count trailing zeros
46si_int __ctzti2(ti_int a);  // count trailing zeros
47
48si_int __ffsdi2(di_int a);  // find least significant 1 bit
49si_int __ffsti2(ti_int a);  // find least significant 1 bit
50
51si_int __paritysi2(si_int a);  // bit parity
52si_int __paritydi2(di_int a);  // bit parity
53si_int __parityti2(ti_int a);  // bit parity
54
55si_int __popcountsi2(si_int a);  // bit population
56si_int __popcountdi2(di_int a);  // bit population
57si_int __popcountti2(ti_int a);  // bit population
58
59uint32_t __bswapsi2(uint32_t a);   // a byteswapped, arm only
60uint64_t __bswapdi2(uint64_t a);   // a byteswapped, arm only
61
62// Integral arithmetic
63
64di_int __negdi2    (di_int a);                         // -a
65ti_int __negti2    (ti_int a);                         // -a
66di_int __muldi3    (di_int a, di_int b);               // a * b
67ti_int __multi3    (ti_int a, ti_int b);               // a * b
68si_int __divsi3    (si_int a, si_int b);               // a / b   signed
69di_int __divdi3    (di_int a, di_int b);               // a / b   signed
70ti_int __divti3    (ti_int a, ti_int b);               // a / b   signed
71su_int __udivsi3   (su_int n, su_int d);               // a / b   unsigned
72du_int __udivdi3   (du_int a, du_int b);               // a / b   unsigned
73tu_int __udivti3   (tu_int a, tu_int b);               // a / b   unsigned
74si_int __modsi3    (si_int a, si_int b);               // a % b   signed
75di_int __moddi3    (di_int a, di_int b);               // a % b   signed
76ti_int __modti3    (ti_int a, ti_int b);               // a % b   signed
77su_int __umodsi3   (su_int a, su_int b);               // a % b   unsigned
78du_int __umoddi3   (du_int a, du_int b);               // a % b   unsigned
79tu_int __umodti3   (tu_int a, tu_int b);               // a % b   unsigned
80du_int __udivmoddi4(du_int a, du_int b, du_int* rem);  // a / b, *rem = a % b  unsigned
81tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);  // a / b, *rem = a % b  unsigned
82su_int __udivmodsi4(su_int a, su_int b, su_int* rem);  // a / b, *rem = a % b  unsigned
83si_int __divmodsi4(si_int a, si_int b, si_int* rem);   // a / b, *rem = a % b  signed
84
85
86
87//  Integral arithmetic with trapping overflow
88
89si_int __absvsi2(si_int a);           // abs(a)
90di_int __absvdi2(di_int a);           // abs(a)
91ti_int __absvti2(ti_int a);           // abs(a)
92
93si_int __negvsi2(si_int a);           // -a
94di_int __negvdi2(di_int a);           // -a
95ti_int __negvti2(ti_int a);           // -a
96
97si_int __addvsi3(si_int a, si_int b);  // a + b
98di_int __addvdi3(di_int a, di_int b);  // a + b
99ti_int __addvti3(ti_int a, ti_int b);  // a + b
100
101si_int __subvsi3(si_int a, si_int b);  // a - b
102di_int __subvdi3(di_int a, di_int b);  // a - b
103ti_int __subvti3(ti_int a, ti_int b);  // a - b
104
105si_int __mulvsi3(si_int a, si_int b);  // a * b
106di_int __mulvdi3(di_int a, di_int b);  // a * b
107ti_int __mulvti3(ti_int a, ti_int b);  // a * b
108
109
110// Integral arithmetic which returns if overflow
111
112si_int __mulosi4(si_int a, si_int b, int* overflow);  // a * b, overflow set to one if result not in signed range
113di_int __mulodi4(di_int a, di_int b, int* overflow);  // a * b, overflow set to one if result not in signed range
114ti_int __muloti4(ti_int a, ti_int b, int* overflow);  // a * b, overflow set to
115 one if result not in signed range
116
117
118//  Integral comparison: a  < b -> 0
119//                       a == b -> 1
120//                       a  > b -> 2
121
122si_int __cmpdi2 (di_int a, di_int b);
123si_int __cmpti2 (ti_int a, ti_int b);
124si_int __ucmpdi2(du_int a, du_int b);
125si_int __ucmpti2(tu_int a, tu_int b);
126
127//  Integral / floating point conversion
128
129di_int __fixsfdi(      float a);
130di_int __fixdfdi(     double a);
131di_int __fixxfdi(long double a);
132
133ti_int __fixsfti(      float a);
134ti_int __fixdfti(     double a);
135ti_int __fixxfti(long double a);
136uint64_t __fixtfdi(long double input);  // ppc only, doesn't match documentation
137
138su_int __fixunssfsi(      float a);
139su_int __fixunsdfsi(     double a);
140su_int __fixunsxfsi(long double a);
141
142du_int __fixunssfdi(      float a);
143du_int __fixunsdfdi(     double a);
144du_int __fixunsxfdi(long double a);
145
146tu_int __fixunssfti(      float a);
147tu_int __fixunsdfti(     double a);
148tu_int __fixunsxfti(long double a);
149uint64_t __fixunstfdi(long double input);  // ppc only
150
151float       __floatdisf(di_int a);
152double      __floatdidf(di_int a);
153long double __floatdixf(di_int a);
154long double __floatditf(int64_t a);        // ppc only
155
156float       __floattisf(ti_int a);
157double      __floattidf(ti_int a);
158long double __floattixf(ti_int a);
159
160float       __floatundisf(du_int a);
161double      __floatundidf(du_int a);
162long double __floatundixf(du_int a);
163long double __floatunditf(uint64_t a);     // ppc only
164
165float       __floatuntisf(tu_int a);
166double      __floatuntidf(tu_int a);
167long double __floatuntixf(tu_int a);
168
169//  Floating point raised to integer power
170
171float       __powisf2(      float a, si_int b);  // a ^ b
172double      __powidf2(     double a, si_int b);  // a ^ b
173long double __powixf2(long double a, si_int b);  // a ^ b
174long double __powitf2(long double a, si_int b);  // ppc only, a ^ b
175
176//  Complex arithmetic
177
178//  (a + ib) * (c + id)
179
180      float _Complex __mulsc3( float a,  float b,  float c,  float d);
181     double _Complex __muldc3(double a, double b, double c, double d);
182long double _Complex __mulxc3(long double a, long double b,
183                              long double c, long double d);
184long double _Complex __multc3(long double a, long double b,
185                              long double c, long double d); // ppc only
186
187//  (a + ib) / (c + id)
188
189      float _Complex __divsc3( float a,  float b,  float c,  float d);
190     double _Complex __divdc3(double a, double b, double c, double d);
191long double _Complex __divxc3(long double a, long double b,
192                              long double c, long double d);
193long double _Complex __divtc3(long double a, long double b,
194                              long double c, long double d);  // ppc only
195
196
197//         Runtime support
198
199// __clear_cache() is used to tell process that new instructions have been
200// written to an address range.  Necessary on processors that do not have
201// a unified instruction and data cache.
202void __clear_cache(void* start, void* end);
203
204// __enable_execute_stack() is used with nested functions when a trampoline
205// function is written onto the stack and that page range needs to be made
206// executable.
207void __enable_execute_stack(void* addr);
208
209// __gcc_personality_v0() is normally only called by the system unwinder.
210// C code (as opposed to C++) normally does not need a personality function
211// because there are no catch clauses or destructors to be run.  But there
212// is a C language extension __attribute__((cleanup(func))) which marks local
213// variables as needing the cleanup function "func" to be run when the
214// variable goes out of scope.  That includes when an exception is thrown,
215// so a personality handler is needed.
216_Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
217         uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
218         _Unwind_Context_t context);
219
220// for use with some implementations of assert() in <assert.h>
221void __eprintf(const char* format, const char* assertion_expression,
222				const char* line, const char* file);
223
224// for systems with emulated thread local storage
225void* __emutls_get_address(struct __emutls_control*);
226
227
228//   Power PC specific functions
229
230// There is no C interface to the saveFP/restFP functions.  They are helper
231// functions called by the prolog and epilog of functions that need to save
232// a number of non-volatile float point registers.
233saveFP
234restFP
235
236// PowerPC has a standard template for trampoline functions.  This function
237// generates a custom trampoline function with the specific realFunc
238// and localsPtr values.
239void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
240                                const void* realFunc, void* localsPtr);
241
242// adds two 128-bit double-double precision values ( x + y )
243long double __gcc_qadd(long double x, long double y);
244
245// subtracts two 128-bit double-double precision values ( x - y )
246long double __gcc_qsub(long double x, long double y);
247
248// multiples two 128-bit double-double precision values ( x * y )
249long double __gcc_qmul(long double x, long double y);
250
251// divides two 128-bit double-double precision values ( x / y )
252long double __gcc_qdiv(long double a, long double b);
253
254
255//    ARM specific functions
256
257// There is no C interface to the switch* functions.  These helper functions
258// are only needed by Thumb1 code for efficient switch table generation.
259switch16
260switch32
261switch8
262switchu8
263
264// There is no C interface to the *_vfp_d8_d15_regs functions.  There are
265// called in the prolog and epilog of Thumb1 functions.  When the C++ ABI use
266// SJLJ for exceptions, each function with a catch clause or destuctors needs
267// to save and restore all registers in it prolog and epliog.  But there is
268// no way to access vector and high float registers from thumb1 code, so the
269// compiler must add call outs to these helper functions in the prolog and
270// epilog.
271restore_vfp_d8_d15_regs
272save_vfp_d8_d15_regs
273
274
275// Note: long ago ARM processors did not have floating point hardware support.
276// Floating point was done in software and floating point parameters were
277// passed in integer registers.  When hardware support was added for floating
278// point, new *vfp functions were added to do the same operations but with
279// floating point parameters in floating point registers.
280
281// Undocumented functions
282
283float  __addsf3vfp(float a, float b);   // Appears to return a + b
284double __adddf3vfp(double a, double b); // Appears to return a + b
285float  __divsf3vfp(float a, float b);   // Appears to return a / b
286double __divdf3vfp(double a, double b); // Appears to return a / b
287int    __eqsf2vfp(float a, float b);    // Appears to return  one
288                                        //     iff a == b and neither is NaN.
289int    __eqdf2vfp(double a, double b);  // Appears to return  one
290                                        //     iff a == b and neither is NaN.
291double __extendsfdf2vfp(float a);       // Appears to convert from
292                                        //     float to double.
293int    __fixdfsivfp(double a);          // Appears to convert from
294                                        //     double to int.
295int    __fixsfsivfp(float a);           // Appears to convert from
296                                        //     float to int.
297unsigned int __fixunssfsivfp(float a);  // Appears to convert from
298                                        //     float to unsigned int.
299unsigned int __fixunsdfsivfp(double a); // Appears to convert from
300                                        //     double to unsigned int.
301double __floatsidfvfp(int a);           // Appears to convert from
302                                        //     int to double.
303float __floatsisfvfp(int a);            // Appears to convert from
304                                        //     int to float.
305double __floatunssidfvfp(unsigned int a); // Appears to convert from
306                                        //     unisgned int to double.
307float __floatunssisfvfp(unsigned int a); // Appears to convert from
308                                        //     unisgned int to float.
309int __gedf2vfp(double a, double b);     // Appears to return __gedf2
310                                        //     (a >= b)
311int __gesf2vfp(float a, float b);       // Appears to return __gesf2
312                                        //     (a >= b)
313int __gtdf2vfp(double a, double b);     // Appears to return __gtdf2
314                                        //     (a > b)
315int __gtsf2vfp(float a, float b);       // Appears to return __gtsf2
316                                        //     (a > b)
317int __ledf2vfp(double a, double b);     // Appears to return __ledf2
318                                        //     (a <= b)
319int __lesf2vfp(float a, float b);       // Appears to return __lesf2
320                                        //     (a <= b)
321int __ltdf2vfp(double a, double b);     // Appears to return __ltdf2
322                                        //     (a < b)
323int __ltsf2vfp(float a, float b);       // Appears to return __ltsf2
324                                        //     (a < b)
325double __muldf3vfp(double a, double b); // Appears to return a * b
326float __mulsf3vfp(float a, float b);    // Appears to return a * b
327int __nedf2vfp(double a, double b);     // Appears to return __nedf2
328                                        //     (a != b)
329double __negdf2vfp(double a);           // Appears to return -a
330float __negsf2vfp(float a);             // Appears to return -a
331float __negsf2vfp(float a);             // Appears to return -a
332double __subdf3vfp(double a, double b); // Appears to return a - b
333float __subsf3vfp(float a, float b);    // Appears to return a - b
334float __truncdfsf2vfp(double a);        // Appears to convert from
335                                        //     double to float.
336int __unorddf2vfp(double a, double b);  // Appears to return __unorddf2
337int __unordsf2vfp(float a, float b);    // Appears to return __unordsf2
338
339
340Preconditions are listed for each function at the definition when there are any.
341Any preconditions reflect the specification at
342http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
343
344Assumptions are listed in "int_lib.h", and in individual files.  Where possible
345assumptions are checked at compile time.
346