1 //=-- lsan_common_linux.cc ------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // Implementation of common leak checking functionality. Linux-specific code.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_common/sanitizer_platform.h"
16 #include "lsan_common.h"
17
18 #if CAN_SANITIZE_LEAKS && SANITIZER_LINUX
19 #include <link.h>
20
21 #include "sanitizer_common/sanitizer_common.h"
22 #include "sanitizer_common/sanitizer_flags.h"
23 #include "sanitizer_common/sanitizer_linux.h"
24 #include "sanitizer_common/sanitizer_stackdepot.h"
25
26 namespace __lsan {
27
28 static const char kLinkerName[] = "ld";
29
30 static char linker_placeholder[sizeof(LoadedModule)] ALIGNED(64);
31 static LoadedModule *linker = nullptr;
32
IsLinker(const char * full_name)33 static bool IsLinker(const char* full_name) {
34 return LibraryNameIs(full_name, kLinkerName);
35 }
36
InitializePlatformSpecificModules()37 void InitializePlatformSpecificModules() {
38 ListOfModules modules;
39 modules.init();
40 for (LoadedModule &module : modules) {
41 if (!IsLinker(module.full_name())) continue;
42 if (linker == nullptr) {
43 linker = reinterpret_cast<LoadedModule *>(linker_placeholder);
44 *linker = module;
45 module = LoadedModule();
46 } else {
47 VReport(1, "LeakSanitizer: Multiple modules match \"%s\". "
48 "TLS will not be handled correctly.\n", kLinkerName);
49 linker->clear();
50 linker = nullptr;
51 return;
52 }
53 }
54 VReport(1, "LeakSanitizer: Dynamic linker not found. "
55 "TLS will not be handled correctly.\n");
56 }
57
ProcessGlobalRegionsCallback(struct dl_phdr_info * info,size_t size,void * data)58 static int ProcessGlobalRegionsCallback(struct dl_phdr_info *info, size_t size,
59 void *data) {
60 Frontier *frontier = reinterpret_cast<Frontier *>(data);
61 for (uptr j = 0; j < info->dlpi_phnum; j++) {
62 const ElfW(Phdr) *phdr = &(info->dlpi_phdr[j]);
63 // We're looking for .data and .bss sections, which reside in writeable,
64 // loadable segments.
65 if (!(phdr->p_flags & PF_W) || (phdr->p_type != PT_LOAD) ||
66 (phdr->p_memsz == 0))
67 continue;
68 uptr begin = info->dlpi_addr + phdr->p_vaddr;
69 uptr end = begin + phdr->p_memsz;
70 uptr allocator_begin = 0, allocator_end = 0;
71 GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
72 if (begin <= allocator_begin && allocator_begin < end) {
73 CHECK_LE(allocator_begin, allocator_end);
74 CHECK_LT(allocator_end, end);
75 if (begin < allocator_begin)
76 ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
77 kReachable);
78 if (allocator_end < end)
79 ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL",
80 kReachable);
81 } else {
82 ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
83 }
84 }
85 return 0;
86 }
87
88 // Scans global variables for heap pointers.
ProcessGlobalRegions(Frontier * frontier)89 void ProcessGlobalRegions(Frontier *frontier) {
90 if (!flags()->use_globals) return;
91 dl_iterate_phdr(ProcessGlobalRegionsCallback, frontier);
92 }
93
GetCallerPC(u32 stack_id,StackDepotReverseMap * map)94 static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
95 CHECK(stack_id);
96 StackTrace stack = map->Get(stack_id);
97 // The top frame is our malloc/calloc/etc. The next frame is the caller.
98 if (stack.size >= 2)
99 return stack.trace[1];
100 return 0;
101 }
102
103 struct ProcessPlatformAllocParam {
104 Frontier *frontier;
105 StackDepotReverseMap *stack_depot_reverse_map;
106 bool skip_linker_allocations;
107 };
108
109 // ForEachChunk callback. Identifies unreachable chunks which must be treated as
110 // reachable. Marks them as reachable and adds them to the frontier.
ProcessPlatformSpecificAllocationsCb(uptr chunk,void * arg)111 static void ProcessPlatformSpecificAllocationsCb(uptr chunk, void *arg) {
112 CHECK(arg);
113 ProcessPlatformAllocParam *param =
114 reinterpret_cast<ProcessPlatformAllocParam *>(arg);
115 chunk = GetUserBegin(chunk);
116 LsanMetadata m(chunk);
117 if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
118 u32 stack_id = m.stack_trace_id();
119 uptr caller_pc = 0;
120 if (stack_id > 0)
121 caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
122 // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
123 // it as reachable, as we can't properly report its allocation stack anyway.
124 if (caller_pc == 0 || (param->skip_linker_allocations &&
125 linker->containsAddress(caller_pc))) {
126 m.set_tag(kReachable);
127 param->frontier->push_back(chunk);
128 }
129 }
130 }
131
132 // Handles dynamically allocated TLS blocks by treating all chunks allocated
133 // from ld-linux.so as reachable.
134 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
135 // They are allocated with a __libc_memalign() call in allocate_and_init()
136 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
137 // blocks, but we can make sure they come from our own allocator by intercepting
138 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
139 // addresses are stored in a dynamically allocated array (the DTV) which is
140 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
141 // being reachable from the static TLS, and the dynamic TLS being reachable from
142 // the DTV. This is because the initial DTV is allocated before our interception
143 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
144 // can't special-case it either, since we don't know its size.
145 // Our solution is to include in the root set all allocations made from
146 // ld-linux.so (which is where allocate_and_init() is implemented). This is
147 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
148 // which we don't care about).
ProcessPlatformSpecificAllocations(Frontier * frontier)149 void ProcessPlatformSpecificAllocations(Frontier *frontier) {
150 StackDepotReverseMap stack_depot_reverse_map;
151 ProcessPlatformAllocParam arg;
152 arg.frontier = frontier;
153 arg.stack_depot_reverse_map = &stack_depot_reverse_map;
154 arg.skip_linker_allocations =
155 flags()->use_tls && flags()->use_ld_allocations && linker != nullptr;
156 ForEachChunk(ProcessPlatformSpecificAllocationsCb, &arg);
157 }
158
159 struct DoStopTheWorldParam {
160 StopTheWorldCallback callback;
161 void *argument;
162 };
163
DoStopTheWorldCallback(struct dl_phdr_info * info,size_t size,void * data)164 static int DoStopTheWorldCallback(struct dl_phdr_info *info, size_t size,
165 void *data) {
166 DoStopTheWorldParam *param = reinterpret_cast<DoStopTheWorldParam *>(data);
167 StopTheWorld(param->callback, param->argument);
168 return 1;
169 }
170
171 // LSan calls dl_iterate_phdr() from the tracer task. This may deadlock: if one
172 // of the threads is frozen while holding the libdl lock, the tracer will hang
173 // in dl_iterate_phdr() forever.
174 // Luckily, (a) the lock is reentrant and (b) libc can't distinguish between the
175 // tracer task and the thread that spawned it. Thus, if we run the tracer task
176 // while holding the libdl lock in the parent thread, we can safely reenter it
177 // in the tracer. The solution is to run stoptheworld from a dl_iterate_phdr()
178 // callback in the parent thread.
DoStopTheWorld(StopTheWorldCallback callback,void * argument)179 void DoStopTheWorld(StopTheWorldCallback callback, void *argument) {
180 DoStopTheWorldParam param = {callback, argument};
181 dl_iterate_phdr(DoStopTheWorldCallback, ¶m);
182 }
183
184 } // namespace __lsan
185
186 #endif // CAN_SANITIZE_LEAKS && SANITIZER_LINUX
187