1 //===-- tsan_fd.cc --------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "tsan_fd.h"
15 #include "tsan_rtl.h"
16 #include <sanitizer_common/sanitizer_atomic.h>
17
18 namespace __tsan {
19
20 const int kTableSizeL1 = 1024;
21 const int kTableSizeL2 = 1024;
22 const int kTableSize = kTableSizeL1 * kTableSizeL2;
23
24 struct FdSync {
25 atomic_uint64_t rc;
26 };
27
28 struct FdDesc {
29 FdSync *sync;
30 int creation_tid;
31 u32 creation_stack;
32 };
33
34 struct FdContext {
35 atomic_uintptr_t tab[kTableSizeL1];
36 // Addresses used for synchronization.
37 FdSync globsync;
38 FdSync filesync;
39 FdSync socksync;
40 u64 connectsync;
41 };
42
43 static FdContext fdctx;
44
bogusfd(int fd)45 static bool bogusfd(int fd) {
46 // Apparently a bogus fd value.
47 return fd < 0 || fd >= kTableSize;
48 }
49
allocsync(ThreadState * thr,uptr pc)50 static FdSync *allocsync(ThreadState *thr, uptr pc) {
51 FdSync *s = (FdSync*)user_alloc(thr, pc, sizeof(FdSync), kDefaultAlignment,
52 false);
53 atomic_store(&s->rc, 1, memory_order_relaxed);
54 return s;
55 }
56
ref(FdSync * s)57 static FdSync *ref(FdSync *s) {
58 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
59 atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
60 return s;
61 }
62
unref(ThreadState * thr,uptr pc,FdSync * s)63 static void unref(ThreadState *thr, uptr pc, FdSync *s) {
64 if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
65 if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
66 CHECK_NE(s, &fdctx.globsync);
67 CHECK_NE(s, &fdctx.filesync);
68 CHECK_NE(s, &fdctx.socksync);
69 user_free(thr, pc, s, false);
70 }
71 }
72 }
73
fddesc(ThreadState * thr,uptr pc,int fd)74 static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
75 CHECK_GE(fd, 0);
76 CHECK_LT(fd, kTableSize);
77 atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
78 uptr l1 = atomic_load(pl1, memory_order_consume);
79 if (l1 == 0) {
80 uptr size = kTableSizeL2 * sizeof(FdDesc);
81 // We need this to reside in user memory to properly catch races on it.
82 void *p = user_alloc(thr, pc, size, kDefaultAlignment, false);
83 internal_memset(p, 0, size);
84 MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
85 if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
86 l1 = (uptr)p;
87 else
88 user_free(thr, pc, p, false);
89 }
90 return &((FdDesc*)l1)[fd % kTableSizeL2]; // NOLINT
91 }
92
93 // pd must be already ref'ed.
init(ThreadState * thr,uptr pc,int fd,FdSync * s,bool write=true)94 static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
95 bool write = true) {
96 FdDesc *d = fddesc(thr, pc, fd);
97 // As a matter of fact, we don't intercept all close calls.
98 // See e.g. libc __res_iclose().
99 if (d->sync) {
100 unref(thr, pc, d->sync);
101 d->sync = 0;
102 }
103 if (flags()->io_sync == 0) {
104 unref(thr, pc, s);
105 } else if (flags()->io_sync == 1) {
106 d->sync = s;
107 } else if (flags()->io_sync == 2) {
108 unref(thr, pc, s);
109 d->sync = &fdctx.globsync;
110 }
111 d->creation_tid = thr->tid;
112 d->creation_stack = CurrentStackId(thr, pc);
113 if (write) {
114 // To catch races between fd usage and open.
115 MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
116 } else {
117 // See the dup-related comment in FdClose.
118 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
119 }
120 }
121
FdInit()122 void FdInit() {
123 atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
124 atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
125 atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
126 }
127
FdOnFork(ThreadState * thr,uptr pc)128 void FdOnFork(ThreadState *thr, uptr pc) {
129 // On fork() we need to reset all fd's, because the child is going
130 // close all them, and that will cause races between previous read/write
131 // and the close.
132 for (int l1 = 0; l1 < kTableSizeL1; l1++) {
133 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
134 if (tab == 0)
135 break;
136 for (int l2 = 0; l2 < kTableSizeL2; l2++) {
137 FdDesc *d = &tab[l2];
138 MemoryResetRange(thr, pc, (uptr)d, 8);
139 }
140 }
141 }
142
FdLocation(uptr addr,int * fd,int * tid,u32 * stack)143 bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) {
144 for (int l1 = 0; l1 < kTableSizeL1; l1++) {
145 FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
146 if (tab == 0)
147 break;
148 if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
149 int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
150 FdDesc *d = &tab[l2];
151 *fd = l1 * kTableSizeL1 + l2;
152 *tid = d->creation_tid;
153 *stack = d->creation_stack;
154 return true;
155 }
156 }
157 return false;
158 }
159
FdAcquire(ThreadState * thr,uptr pc,int fd)160 void FdAcquire(ThreadState *thr, uptr pc, int fd) {
161 if (bogusfd(fd))
162 return;
163 FdDesc *d = fddesc(thr, pc, fd);
164 FdSync *s = d->sync;
165 DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
166 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
167 if (s)
168 Acquire(thr, pc, (uptr)s);
169 }
170
FdRelease(ThreadState * thr,uptr pc,int fd)171 void FdRelease(ThreadState *thr, uptr pc, int fd) {
172 if (bogusfd(fd))
173 return;
174 FdDesc *d = fddesc(thr, pc, fd);
175 FdSync *s = d->sync;
176 DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
177 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
178 if (s)
179 Release(thr, pc, (uptr)s);
180 }
181
FdAccess(ThreadState * thr,uptr pc,int fd)182 void FdAccess(ThreadState *thr, uptr pc, int fd) {
183 DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
184 if (bogusfd(fd))
185 return;
186 FdDesc *d = fddesc(thr, pc, fd);
187 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
188 }
189
FdClose(ThreadState * thr,uptr pc,int fd,bool write)190 void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
191 DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
192 if (bogusfd(fd))
193 return;
194 FdDesc *d = fddesc(thr, pc, fd);
195 if (write) {
196 // To catch races between fd usage and close.
197 MemoryWrite(thr, pc, (uptr)d, kSizeLog8);
198 } else {
199 // This path is used only by dup2/dup3 calls.
200 // We do read instead of write because there is a number of legitimate
201 // cases where write would lead to false positives:
202 // 1. Some software dups a closed pipe in place of a socket before closing
203 // the socket (to prevent races actually).
204 // 2. Some daemons dup /dev/null in place of stdin/stdout.
205 // On the other hand we have not seen cases when write here catches real
206 // bugs.
207 MemoryRead(thr, pc, (uptr)d, kSizeLog8);
208 }
209 // We need to clear it, because if we do not intercept any call out there
210 // that creates fd, we will hit false postives.
211 MemoryResetRange(thr, pc, (uptr)d, 8);
212 unref(thr, pc, d->sync);
213 d->sync = 0;
214 d->creation_tid = 0;
215 d->creation_stack = 0;
216 }
217
FdFileCreate(ThreadState * thr,uptr pc,int fd)218 void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
219 DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
220 if (bogusfd(fd))
221 return;
222 init(thr, pc, fd, &fdctx.filesync);
223 }
224
FdDup(ThreadState * thr,uptr pc,int oldfd,int newfd,bool write)225 void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
226 DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
227 if (bogusfd(oldfd) || bogusfd(newfd))
228 return;
229 // Ignore the case when user dups not yet connected socket.
230 FdDesc *od = fddesc(thr, pc, oldfd);
231 MemoryRead(thr, pc, (uptr)od, kSizeLog8);
232 FdClose(thr, pc, newfd, write);
233 init(thr, pc, newfd, ref(od->sync), write);
234 }
235
FdPipeCreate(ThreadState * thr,uptr pc,int rfd,int wfd)236 void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
237 DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
238 FdSync *s = allocsync(thr, pc);
239 init(thr, pc, rfd, ref(s));
240 init(thr, pc, wfd, ref(s));
241 unref(thr, pc, s);
242 }
243
FdEventCreate(ThreadState * thr,uptr pc,int fd)244 void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
245 DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
246 if (bogusfd(fd))
247 return;
248 init(thr, pc, fd, allocsync(thr, pc));
249 }
250
FdSignalCreate(ThreadState * thr,uptr pc,int fd)251 void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
252 DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
253 if (bogusfd(fd))
254 return;
255 init(thr, pc, fd, 0);
256 }
257
FdInotifyCreate(ThreadState * thr,uptr pc,int fd)258 void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
259 DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
260 if (bogusfd(fd))
261 return;
262 init(thr, pc, fd, 0);
263 }
264
FdPollCreate(ThreadState * thr,uptr pc,int fd)265 void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
266 DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
267 if (bogusfd(fd))
268 return;
269 init(thr, pc, fd, allocsync(thr, pc));
270 }
271
FdSocketCreate(ThreadState * thr,uptr pc,int fd)272 void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
273 DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
274 if (bogusfd(fd))
275 return;
276 // It can be a UDP socket.
277 init(thr, pc, fd, &fdctx.socksync);
278 }
279
FdSocketAccept(ThreadState * thr,uptr pc,int fd,int newfd)280 void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
281 DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
282 if (bogusfd(fd))
283 return;
284 // Synchronize connect->accept.
285 Acquire(thr, pc, (uptr)&fdctx.connectsync);
286 init(thr, pc, newfd, &fdctx.socksync);
287 }
288
FdSocketConnecting(ThreadState * thr,uptr pc,int fd)289 void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
290 DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
291 if (bogusfd(fd))
292 return;
293 // Synchronize connect->accept.
294 Release(thr, pc, (uptr)&fdctx.connectsync);
295 }
296
FdSocketConnect(ThreadState * thr,uptr pc,int fd)297 void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
298 DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
299 if (bogusfd(fd))
300 return;
301 init(thr, pc, fd, &fdctx.socksync);
302 }
303
File2addr(const char * path)304 uptr File2addr(const char *path) {
305 (void)path;
306 static u64 addr;
307 return (uptr)&addr;
308 }
309
Dir2addr(const char * path)310 uptr Dir2addr(const char *path) {
311 (void)path;
312 static u64 addr;
313 return (uptr)&addr;
314 }
315
316 } // namespace __tsan
317