1 // Copyright (c) 2016 Google Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 #ifndef INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_ 16 #define INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_ 17 18 #include <memory> 19 #include <ostream> 20 #include <string> 21 #include <unordered_map> 22 #include <vector> 23 24 #include "libspirv.hpp" 25 26 namespace spvtools { 27 28 namespace opt { 29 class Pass; 30 } 31 32 // C++ interface for SPIR-V optimization functionalities. It wraps the context 33 // (including target environment and the corresponding SPIR-V grammar) and 34 // provides methods for registering optimization passes and optimizing. 35 // 36 // Instances of this class provides basic thread-safety guarantee. 37 class Optimizer { 38 public: 39 // The token for an optimization pass. It is returned via one of the 40 // Create*Pass() standalone functions at the end of this header file and 41 // consumed by the RegisterPass() method. Tokens are one-time objects that 42 // only support move; copying is not allowed. 43 struct PassToken { 44 struct Impl; // Opaque struct for holding inernal data. 45 46 PassToken(std::unique_ptr<Impl>); 47 48 // Tokens for built-in passes should be created using Create*Pass functions 49 // below; for out-of-tree passes, use this constructor instead. 50 // Note that this API isn't guaranteed to be stable and may change without 51 // preserving source or binary compatibility in the future. 52 PassToken(std::unique_ptr<opt::Pass>&& pass); 53 54 // Tokens can only be moved. Copying is disabled. 55 PassToken(const PassToken&) = delete; 56 PassToken(PassToken&&); 57 PassToken& operator=(const PassToken&) = delete; 58 PassToken& operator=(PassToken&&); 59 60 ~PassToken(); 61 62 std::unique_ptr<Impl> impl_; // Unique pointer to internal data. 63 }; 64 65 // Constructs an instance with the given target |env|, which is used to decode 66 // the binaries to be optimized later. 67 // 68 // The instance will have an empty message consumer, which ignores all 69 // messages from the library. Use SetMessageConsumer() to supply a consumer 70 // if messages are of concern. 71 explicit Optimizer(spv_target_env env); 72 73 // Disables copy/move constructor/assignment operations. 74 Optimizer(const Optimizer&) = delete; 75 Optimizer(Optimizer&&) = delete; 76 Optimizer& operator=(const Optimizer&) = delete; 77 Optimizer& operator=(Optimizer&&) = delete; 78 79 // Destructs this instance. 80 ~Optimizer(); 81 82 // Sets the message consumer to the given |consumer|. The |consumer| will be 83 // invoked once for each message communicated from the library. 84 void SetMessageConsumer(MessageConsumer consumer); 85 86 // Returns a reference to the registered message consumer. 87 const MessageConsumer& consumer() const; 88 89 // Registers the given |pass| to this optimizer. Passes will be run in the 90 // exact order of registration. The token passed in will be consumed by this 91 // method. 92 Optimizer& RegisterPass(PassToken&& pass); 93 94 // Registers passes that attempt to improve performance of generated code. 95 // This sequence of passes is subject to constant review and will change 96 // from time to time. 97 Optimizer& RegisterPerformancePasses(); 98 99 // Registers passes that attempt to improve the size of generated code. 100 // This sequence of passes is subject to constant review and will change 101 // from time to time. 102 Optimizer& RegisterSizePasses(); 103 104 // Registers passes that attempt to legalize the generated code. 105 // 106 // Note: this recipe is specially designed for legalizing SPIR-V. It should be 107 // used by compilers after translating HLSL source code literally. It should 108 // *not* be used by general workloads for performance or size improvement. 109 // 110 // This sequence of passes is subject to constant review and will change 111 // from time to time. 112 Optimizer& RegisterLegalizationPasses(); 113 114 // Register passes specified in the list of |flags|. Each flag must be a 115 // string of a form accepted by Optimizer::FlagHasValidForm(). 116 // 117 // If the list of flags contains an invalid entry, it returns false and an 118 // error message is emitted to the MessageConsumer object (use 119 // Optimizer::SetMessageConsumer to define a message consumer, if needed). 120 // 121 // If all the passes are registered successfully, it returns true. 122 bool RegisterPassesFromFlags(const std::vector<std::string>& flags); 123 124 // Registers the optimization pass associated with |flag|. This only accepts 125 // |flag| values of the form "--pass_name[=pass_args]". If no such pass 126 // exists, it returns false. Otherwise, the pass is registered and it returns 127 // true. 128 // 129 // The following flags have special meaning: 130 // 131 // -O: Registers all performance optimization passes 132 // (Optimizer::RegisterPerformancePasses) 133 // 134 // -Os: Registers all size optimization passes 135 // (Optimizer::RegisterSizePasses). 136 // 137 // --legalize-hlsl: Registers all passes that legalize SPIR-V generated by an 138 // HLSL front-end. 139 bool RegisterPassFromFlag(const std::string& flag); 140 141 // Validates that |flag| has a valid format. Strings accepted: 142 // 143 // --pass_name[=pass_args] 144 // -O 145 // -Os 146 // 147 // If |flag| takes one of the forms above, it returns true. Otherwise, it 148 // returns false. 149 bool FlagHasValidForm(const std::string& flag) const; 150 151 // Allows changing, after creation time, the target environment to be 152 // optimized for and validated. Should be called before calling Run(). 153 void SetTargetEnv(const spv_target_env env); 154 155 // Optimizes the given SPIR-V module |original_binary| and writes the 156 // optimized binary into |optimized_binary|. The optimized binary uses 157 // the same SPIR-V version as the original binary. 158 // 159 // Returns true on successful optimization, whether or not the module is 160 // modified. Returns false if |original_binary| fails to validate or if errors 161 // occur when processing |original_binary| using any of the registered passes. 162 // In that case, no further passes are executed and the contents in 163 // |optimized_binary| may be invalid. 164 // 165 // By default, the binary is validated before any transforms are performed, 166 // and optionally after each transform. Validation uses SPIR-V spec rules 167 // for the SPIR-V version named in the binary's header (at word offset 1). 168 // Additionally, if the target environment is a client API (such as 169 // Vulkan 1.1), then validate for that client API version, to the extent 170 // that it is verifiable from data in the binary itself. 171 // 172 // It's allowed to alias |original_binary| to the start of |optimized_binary|. 173 bool Run(const uint32_t* original_binary, size_t original_binary_size, 174 std::vector<uint32_t>* optimized_binary) const; 175 176 // DEPRECATED: Same as above, except passes |options| to the validator when 177 // trying to validate the binary. If |skip_validation| is true, then the 178 // caller is guaranteeing that |original_binary| is valid, and the validator 179 // will not be run. The |max_id_bound| is the limit on the max id in the 180 // module. 181 bool Run(const uint32_t* original_binary, const size_t original_binary_size, 182 std::vector<uint32_t>* optimized_binary, 183 const ValidatorOptions& options, bool skip_validation) const; 184 185 // Same as above, except it takes an options object. See the documentation 186 // for |OptimizerOptions| to see which options can be set. 187 // 188 // By default, the binary is validated before any transforms are performed, 189 // and optionally after each transform. Validation uses SPIR-V spec rules 190 // for the SPIR-V version named in the binary's header (at word offset 1). 191 // Additionally, if the target environment is a client API (such as 192 // Vulkan 1.1), then validate for that client API version, to the extent 193 // that it is verifiable from data in the binary itself, or from the 194 // validator options set on the optimizer options. 195 bool Run(const uint32_t* original_binary, const size_t original_binary_size, 196 std::vector<uint32_t>* optimized_binary, 197 const spv_optimizer_options opt_options) const; 198 199 // Returns a vector of strings with all the pass names added to this 200 // optimizer's pass manager. These strings are valid until the associated 201 // pass manager is destroyed. 202 std::vector<const char*> GetPassNames() const; 203 204 // Sets the option to print the disassembly before each pass and after the 205 // last pass. If |out| is null, then no output is generated. Otherwise, 206 // output is sent to the |out| output stream. 207 Optimizer& SetPrintAll(std::ostream* out); 208 209 // Sets the option to print the resource utilization of each pass. If |out| 210 // is null, then no output is generated. Otherwise, output is sent to the 211 // |out| output stream. 212 Optimizer& SetTimeReport(std::ostream* out); 213 214 // Sets the option to validate the module after each pass. 215 Optimizer& SetValidateAfterAll(bool validate); 216 217 private: 218 struct Impl; // Opaque struct for holding internal data. 219 std::unique_ptr<Impl> impl_; // Unique pointer to internal data. 220 }; 221 222 // Creates a null pass. 223 // A null pass does nothing to the SPIR-V module to be optimized. 224 Optimizer::PassToken CreateNullPass(); 225 226 // Creates a strip-debug-info pass. 227 // A strip-debug-info pass removes all debug instructions (as documented in 228 // Section 3.32.2 of the SPIR-V spec) of the SPIR-V module to be optimized. 229 Optimizer::PassToken CreateStripDebugInfoPass(); 230 231 // Creates a strip-reflect-info pass. 232 // A strip-reflect-info pass removes all reflections instructions. 233 // For now, this is limited to removing decorations defined in 234 // SPV_GOOGLE_hlsl_functionality1. The coverage may expand in 235 // the future. 236 Optimizer::PassToken CreateStripReflectInfoPass(); 237 238 // Creates an eliminate-dead-functions pass. 239 // An eliminate-dead-functions pass will remove all functions that are not in 240 // the call trees rooted at entry points and exported functions. These 241 // functions are not needed because they will never be called. 242 Optimizer::PassToken CreateEliminateDeadFunctionsPass(); 243 244 // Creates an eliminate-dead-members pass. 245 // An eliminate-dead-members pass will remove all unused members of structures. 246 // This will not affect the data layout of the remaining members. 247 Optimizer::PassToken CreateEliminateDeadMembersPass(); 248 249 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids 250 // to the default values in the form of string. 251 // A set-spec-constant-default-value pass sets the default values for the 252 // spec constants that have SpecId decorations (i.e., those defined by 253 // OpSpecConstant{|True|False} instructions). 254 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass( 255 const std::unordered_map<uint32_t, std::string>& id_value_map); 256 257 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids 258 // to the default values in the form of bit pattern. 259 // A set-spec-constant-default-value pass sets the default values for the 260 // spec constants that have SpecId decorations (i.e., those defined by 261 // OpSpecConstant{|True|False} instructions). 262 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass( 263 const std::unordered_map<uint32_t, std::vector<uint32_t>>& id_value_map); 264 265 // Creates a flatten-decoration pass. 266 // A flatten-decoration pass replaces grouped decorations with equivalent 267 // ungrouped decorations. That is, it replaces each OpDecorationGroup 268 // instruction and associated OpGroupDecorate and OpGroupMemberDecorate 269 // instructions with equivalent OpDecorate and OpMemberDecorate instructions. 270 // The pass does not attempt to preserve debug information for instructions 271 // it removes. 272 Optimizer::PassToken CreateFlattenDecorationPass(); 273 274 // Creates a freeze-spec-constant-value pass. 275 // A freeze-spec-constant pass specializes the value of spec constants to 276 // their default values. This pass only processes the spec constants that have 277 // SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or 278 // OpSpecConstantFalse instructions) and replaces them with their normal 279 // counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The 280 // corresponding SpecId annotation instructions will also be removed. This 281 // pass does not fold the newly added normal constants and does not process 282 // other spec constants defined by OpSpecConstantComposite or 283 // OpSpecConstantOp. 284 Optimizer::PassToken CreateFreezeSpecConstantValuePass(); 285 286 // Creates a fold-spec-constant-op-and-composite pass. 287 // A fold-spec-constant-op-and-composite pass folds spec constants defined by 288 // OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants 289 // defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or 290 // OpConstantComposite instructions. Note that spec constants defined with 291 // OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are 292 // not handled, as these instructions indicate their value are not determined 293 // and can be changed in future. A spec constant is foldable if all of its 294 // value(s) can be determined from the module. E.g., an integer spec constant 295 // defined with OpSpecConstantOp instruction can be folded if its value won't 296 // change later. This pass will replace the original OpSpecContantOp instruction 297 // with an OpConstant instruction. When folding composite spec constants, 298 // new instructions may be inserted to define the components of the composite 299 // constant first, then the original spec constants will be replaced by 300 // OpConstantComposite instructions. 301 // 302 // There are some operations not supported yet: 303 // OpSConvert, OpFConvert, OpQuantizeToF16 and 304 // all the operations under Kernel capability. 305 // TODO(qining): Add support for the operations listed above. 306 Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass(); 307 308 // Creates a unify-constant pass. 309 // A unify-constant pass de-duplicates the constants. Constants with the exact 310 // same value and identical form will be unified and only one constant will 311 // be kept for each unique pair of type and value. 312 // There are several cases not handled by this pass: 313 // 1) Constants defined by OpConstantNull instructions (null constants) and 314 // constants defined by OpConstantFalse, OpConstant or OpConstantComposite 315 // with value 0 (zero-valued normal constants) are not considered equivalent. 316 // So null constants won't be used to replace zero-valued normal constants, 317 // vice versa. 318 // 2) Whenever there are decorations to the constant's result id id, the 319 // constant won't be handled, which means, it won't be used to replace any 320 // other constants, neither can other constants replace it. 321 // 3) NaN in float point format with different bit patterns are not unified. 322 Optimizer::PassToken CreateUnifyConstantPass(); 323 324 // Creates a eliminate-dead-constant pass. 325 // A eliminate-dead-constant pass removes dead constants, including normal 326 // contants defined by OpConstant, OpConstantComposite, OpConstantTrue, or 327 // OpConstantFalse and spec constants defined by OpSpecConstant, 328 // OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or 329 // OpSpecConstantOp. 330 Optimizer::PassToken CreateEliminateDeadConstantPass(); 331 332 // Creates a strength-reduction pass. 333 // A strength-reduction pass will look for opportunities to replace an 334 // instruction with an equivalent and less expensive one. For example, 335 // multiplying by a power of 2 can be replaced by a bit shift. 336 Optimizer::PassToken CreateStrengthReductionPass(); 337 338 // Creates a block merge pass. 339 // This pass searches for blocks with a single Branch to a block with no 340 // other predecessors and merges the blocks into a single block. Continue 341 // blocks and Merge blocks are not candidates for the second block. 342 // 343 // The pass is most useful after Dead Branch Elimination, which can leave 344 // such sequences of blocks. Merging them makes subsequent passes more 345 // effective, such as single block local store-load elimination. 346 // 347 // While this pass reduces the number of occurrences of this sequence, at 348 // this time it does not guarantee all such sequences are eliminated. 349 // 350 // Presence of phi instructions can inhibit this optimization. Handling 351 // these is left for future improvements. 352 Optimizer::PassToken CreateBlockMergePass(); 353 354 // Creates an exhaustive inline pass. 355 // An exhaustive inline pass attempts to exhaustively inline all function 356 // calls in all functions in an entry point call tree. The intent is to enable, 357 // albeit through brute force, analysis and optimization across function 358 // calls by subsequent optimization passes. As the inlining is exhaustive, 359 // there is no attempt to optimize for size or runtime performance. Functions 360 // that are not in the call tree of an entry point are not changed. 361 Optimizer::PassToken CreateInlineExhaustivePass(); 362 363 // Creates an opaque inline pass. 364 // An opaque inline pass inlines all function calls in all functions in all 365 // entry point call trees where the called function contains an opaque type 366 // in either its parameter types or return type. An opaque type is currently 367 // defined as Image, Sampler or SampledImage. The intent is to enable, albeit 368 // through brute force, analysis and optimization across these function calls 369 // by subsequent passes in order to remove the storing of opaque types which is 370 // not legal in Vulkan. Functions that are not in the call tree of an entry 371 // point are not changed. 372 Optimizer::PassToken CreateInlineOpaquePass(); 373 374 // Creates a single-block local variable load/store elimination pass. 375 // For every entry point function, do single block memory optimization of 376 // function variables referenced only with non-access-chain loads and stores. 377 // For each targeted variable load, if previous store to that variable in the 378 // block, replace the load's result id with the value id of the store. 379 // If previous load within the block, replace the current load's result id 380 // with the previous load's result id. In either case, delete the current 381 // load. Finally, check if any remaining stores are useless, and delete store 382 // and variable if possible. 383 // 384 // The presence of access chain references and function calls can inhibit 385 // the above optimization. 386 // 387 // Only modules with relaxed logical addressing (see opt/instruction.h) are 388 // currently processed. 389 // 390 // This pass is most effective if preceeded by Inlining and 391 // LocalAccessChainConvert. This pass will reduce the work needed to be done 392 // by LocalSingleStoreElim and LocalMultiStoreElim. 393 // 394 // Only functions in the call tree of an entry point are processed. 395 Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass(); 396 397 // Create dead branch elimination pass. 398 // For each entry point function, this pass will look for SelectionMerge 399 // BranchConditionals with constant condition and convert to a Branch to 400 // the indicated label. It will delete resulting dead blocks. 401 // 402 // For all phi functions in merge block, replace all uses with the id 403 // corresponding to the living predecessor. 404 // 405 // Note that some branches and blocks may be left to avoid creating invalid 406 // control flow. Improving this is left to future work. 407 // 408 // This pass is most effective when preceeded by passes which eliminate 409 // local loads and stores, effectively propagating constant values where 410 // possible. 411 Optimizer::PassToken CreateDeadBranchElimPass(); 412 413 // Creates an SSA local variable load/store elimination pass. 414 // For every entry point function, eliminate all loads and stores of function 415 // scope variables only referenced with non-access-chain loads and stores. 416 // Eliminate the variables as well. 417 // 418 // The presence of access chain references and function calls can inhibit 419 // the above optimization. 420 // 421 // Only shader modules with relaxed logical addressing (see opt/instruction.h) 422 // are currently processed. Currently modules with any extensions enabled are 423 // not processed. This is left for future work. 424 // 425 // This pass is most effective if preceeded by Inlining and 426 // LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim 427 // will reduce the work that this pass has to do. 428 Optimizer::PassToken CreateLocalMultiStoreElimPass(); 429 430 // Creates a local access chain conversion pass. 431 // A local access chain conversion pass identifies all function scope 432 // variables which are accessed only with loads, stores and access chains 433 // with constant indices. It then converts all loads and stores of such 434 // variables into equivalent sequences of loads, stores, extracts and inserts. 435 // 436 // This pass only processes entry point functions. It currently only converts 437 // non-nested, non-ptr access chains. It does not process modules with 438 // non-32-bit integer types present. Optional memory access options on loads 439 // and stores are ignored as we are only processing function scope variables. 440 // 441 // This pass unifies access to these variables to a single mode and simplifies 442 // subsequent analysis and elimination of these variables along with their 443 // loads and stores allowing values to propagate to their points of use where 444 // possible. 445 Optimizer::PassToken CreateLocalAccessChainConvertPass(); 446 447 // Creates a local single store elimination pass. 448 // For each entry point function, this pass eliminates loads and stores for 449 // function scope variable that are stored to only once, where possible. Only 450 // whole variable loads and stores are eliminated; access-chain references are 451 // not optimized. Replace all loads of such variables with the value that is 452 // stored and eliminate any resulting dead code. 453 // 454 // Currently, the presence of access chains and function calls can inhibit this 455 // pass, however the Inlining and LocalAccessChainConvert passes can make it 456 // more effective. In additional, many non-load/store memory operations are 457 // not supported and will prohibit optimization of a function. Support of 458 // these operations are future work. 459 // 460 // Only shader modules with relaxed logical addressing (see opt/instruction.h) 461 // are currently processed. 462 // 463 // This pass will reduce the work needed to be done by LocalSingleBlockElim 464 // and LocalMultiStoreElim and can improve the effectiveness of other passes 465 // such as DeadBranchElimination which depend on values for their analysis. 466 Optimizer::PassToken CreateLocalSingleStoreElimPass(); 467 468 // Creates an insert/extract elimination pass. 469 // This pass processes each entry point function in the module, searching for 470 // extracts on a sequence of inserts. It further searches the sequence for an 471 // insert with indices identical to the extract. If such an insert can be 472 // found before hitting a conflicting insert, the extract's result id is 473 // replaced with the id of the values from the insert. 474 // 475 // Besides removing extracts this pass enables subsequent dead code elimination 476 // passes to delete the inserts. This pass performs best after access chains are 477 // converted to inserts and extracts and local loads and stores are eliminated. 478 Optimizer::PassToken CreateInsertExtractElimPass(); 479 480 // Creates a dead insert elimination pass. 481 // This pass processes each entry point function in the module, searching for 482 // unreferenced inserts into composite types. These are most often unused 483 // stores to vector components. They are unused because they are never 484 // referenced, or because there is another insert to the same component between 485 // the insert and the reference. After removing the inserts, dead code 486 // elimination is attempted on the inserted values. 487 // 488 // This pass performs best after access chains are converted to inserts and 489 // extracts and local loads and stores are eliminated. While executing this 490 // pass can be advantageous on its own, it is also advantageous to execute 491 // this pass after CreateInsertExtractPass() as it will remove any unused 492 // inserts created by that pass. 493 Optimizer::PassToken CreateDeadInsertElimPass(); 494 495 // Create aggressive dead code elimination pass 496 // This pass eliminates unused code from the module. In addition, 497 // it detects and eliminates code which may have spurious uses but which do 498 // not contribute to the output of the function. The most common cause of 499 // such code sequences is summations in loops whose result is no longer used 500 // due to dead code elimination. This optimization has additional compile 501 // time cost over standard dead code elimination. 502 // 503 // This pass only processes entry point functions. It also only processes 504 // shaders with relaxed logical addressing (see opt/instruction.h). It 505 // currently will not process functions with function calls. Unreachable 506 // functions are deleted. 507 // 508 // This pass will be made more effective by first running passes that remove 509 // dead control flow and inlines function calls. 510 // 511 // This pass can be especially useful after running Local Access Chain 512 // Conversion, which tends to cause cycles of dead code to be left after 513 // Store/Load elimination passes are completed. These cycles cannot be 514 // eliminated with standard dead code elimination. 515 Optimizer::PassToken CreateAggressiveDCEPass(); 516 517 // Creates an empty pass. 518 // This is deprecated and will be removed. 519 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests. 520 // https://github.com/KhronosGroup/glslang/pull/2440 521 Optimizer::PassToken CreatePropagateLineInfoPass(); 522 523 // Creates an empty pass. 524 // This is deprecated and will be removed. 525 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests. 526 // https://github.com/KhronosGroup/glslang/pull/2440 527 Optimizer::PassToken CreateRedundantLineInfoElimPass(); 528 529 // Creates a compact ids pass. 530 // The pass remaps result ids to a compact and gapless range starting from %1. 531 Optimizer::PassToken CreateCompactIdsPass(); 532 533 // Creates a remove duplicate pass. 534 // This pass removes various duplicates: 535 // * duplicate capabilities; 536 // * duplicate extended instruction imports; 537 // * duplicate types; 538 // * duplicate decorations. 539 Optimizer::PassToken CreateRemoveDuplicatesPass(); 540 541 // Creates a CFG cleanup pass. 542 // This pass removes cruft from the control flow graph of functions that are 543 // reachable from entry points and exported functions. It currently includes the 544 // following functionality: 545 // 546 // - Removal of unreachable basic blocks. 547 Optimizer::PassToken CreateCFGCleanupPass(); 548 549 // Create dead variable elimination pass. 550 // This pass will delete module scope variables, along with their decorations, 551 // that are not referenced. 552 Optimizer::PassToken CreateDeadVariableEliminationPass(); 553 554 // create merge return pass. 555 // changes functions that have multiple return statements so they have a single 556 // return statement. 557 // 558 // for structured control flow it is assumed that the only unreachable blocks in 559 // the function are trivial merge and continue blocks. 560 // 561 // a trivial merge block contains the label and an opunreachable instructions, 562 // nothing else. a trivial continue block contain a label and an opbranch to 563 // the header, nothing else. 564 // 565 // these conditions are guaranteed to be met after running dead-branch 566 // elimination. 567 Optimizer::PassToken CreateMergeReturnPass(); 568 569 // Create value numbering pass. 570 // This pass will look for instructions in the same basic block that compute the 571 // same value, and remove the redundant ones. 572 Optimizer::PassToken CreateLocalRedundancyEliminationPass(); 573 574 // Create LICM pass. 575 // This pass will look for invariant instructions inside loops and hoist them to 576 // the loops preheader. 577 Optimizer::PassToken CreateLoopInvariantCodeMotionPass(); 578 579 // Creates a loop fission pass. 580 // This pass will split all top level loops whose register pressure exceedes the 581 // given |threshold|. 582 Optimizer::PassToken CreateLoopFissionPass(size_t threshold); 583 584 // Creates a loop fusion pass. 585 // This pass will look for adjacent loops that are compatible and legal to be 586 // fused. The fuse all such loops as long as the register usage for the fused 587 // loop stays under the threshold defined by |max_registers_per_loop|. 588 Optimizer::PassToken CreateLoopFusionPass(size_t max_registers_per_loop); 589 590 // Creates a loop peeling pass. 591 // This pass will look for conditions inside a loop that are true or false only 592 // for the N first or last iteration. For loop with such condition, those N 593 // iterations of the loop will be executed outside of the main loop. 594 // To limit code size explosion, the loop peeling can only happen if the code 595 // size growth for each loop is under |code_growth_threshold|. 596 Optimizer::PassToken CreateLoopPeelingPass(); 597 598 // Creates a loop unswitch pass. 599 // This pass will look for loop independent branch conditions and move the 600 // condition out of the loop and version the loop based on the taken branch. 601 // Works best after LICM and local multi store elimination pass. 602 Optimizer::PassToken CreateLoopUnswitchPass(); 603 604 // Create global value numbering pass. 605 // This pass will look for instructions where the same value is computed on all 606 // paths leading to the instruction. Those instructions are deleted. 607 Optimizer::PassToken CreateRedundancyEliminationPass(); 608 609 // Create scalar replacement pass. 610 // This pass replaces composite function scope variables with variables for each 611 // element if those elements are accessed individually. The parameter is a 612 // limit on the number of members in the composite variable that the pass will 613 // consider replacing. 614 Optimizer::PassToken CreateScalarReplacementPass(uint32_t size_limit = 100); 615 616 // Create a private to local pass. 617 // This pass looks for variables delcared in the private storage class that are 618 // used in only one function. Those variables are moved to the function storage 619 // class in the function that they are used. 620 Optimizer::PassToken CreatePrivateToLocalPass(); 621 622 // Creates a conditional constant propagation (CCP) pass. 623 // This pass implements the SSA-CCP algorithm in 624 // 625 // Constant propagation with conditional branches, 626 // Wegman and Zadeck, ACM TOPLAS 13(2):181-210. 627 // 628 // Constant values in expressions and conditional jumps are folded and 629 // simplified. This may reduce code size by removing never executed jump targets 630 // and computations with constant operands. 631 Optimizer::PassToken CreateCCPPass(); 632 633 // Creates a workaround driver bugs pass. This pass attempts to work around 634 // a known driver bug (issue #1209) by identifying the bad code sequences and 635 // rewriting them. 636 // 637 // Current workaround: Avoid OpUnreachable instructions in loops. 638 Optimizer::PassToken CreateWorkaround1209Pass(); 639 640 // Creates a pass that converts if-then-else like assignments into OpSelect. 641 Optimizer::PassToken CreateIfConversionPass(); 642 643 // Creates a pass that will replace instructions that are not valid for the 644 // current shader stage by constants. Has no effect on non-shader modules. 645 Optimizer::PassToken CreateReplaceInvalidOpcodePass(); 646 647 // Creates a pass that simplifies instructions using the instruction folder. 648 Optimizer::PassToken CreateSimplificationPass(); 649 650 // Create loop unroller pass. 651 // Creates a pass to unroll loops which have the "Unroll" loop control 652 // mask set. The loops must meet a specific criteria in order to be unrolled 653 // safely this criteria is checked before doing the unroll by the 654 // LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria 655 // won't be unrolled. See CanPerformUnroll LoopUtils.h for more information. 656 Optimizer::PassToken CreateLoopUnrollPass(bool fully_unroll, int factor = 0); 657 658 // Create the SSA rewrite pass. 659 // This pass converts load/store operations on function local variables into 660 // operations on SSA IDs. This allows SSA optimizers to act on these variables. 661 // Only variables that are local to the function and of supported types are 662 // processed (see IsSSATargetVar for details). 663 Optimizer::PassToken CreateSSARewritePass(); 664 665 // Create pass to convert relaxed precision instructions to half precision. 666 // This pass converts as many relaxed float32 arithmetic operations to half as 667 // possible. It converts any float32 operands to half if needed. It converts 668 // any resulting half precision values back to float32 as needed. No variables 669 // are changed. No image operations are changed. 670 // 671 // Best if run after function scope store/load and composite operation 672 // eliminations are run. Also best if followed by instruction simplification, 673 // redundancy elimination and DCE. 674 Optimizer::PassToken CreateConvertRelaxedToHalfPass(); 675 676 // Create relax float ops pass. 677 // This pass decorates all float32 result instructions with RelaxedPrecision 678 // if not already so decorated. 679 Optimizer::PassToken CreateRelaxFloatOpsPass(); 680 681 // Create copy propagate arrays pass. 682 // This pass looks to copy propagate memory references for arrays. It looks 683 // for specific code patterns to recognize array copies. 684 Optimizer::PassToken CreateCopyPropagateArraysPass(); 685 686 // Create a vector dce pass. 687 // This pass looks for components of vectors that are unused, and removes them 688 // from the vector. Note this would still leave around lots of dead code that 689 // a pass of ADCE will be able to remove. 690 Optimizer::PassToken CreateVectorDCEPass(); 691 692 // Create a pass to reduce the size of loads. 693 // This pass looks for loads of structures where only a few of its members are 694 // used. It replaces the loads feeding an OpExtract with an OpAccessChain and 695 // a load of the specific elements. 696 Optimizer::PassToken CreateReduceLoadSizePass(); 697 698 // Create a pass to combine chained access chains. 699 // This pass looks for access chains fed by other access chains and combines 700 // them into a single instruction where possible. 701 Optimizer::PassToken CreateCombineAccessChainsPass(); 702 703 // Create a pass to instrument bindless descriptor checking 704 // This pass instruments all bindless references to check that descriptor 705 // array indices are inbounds, and if the descriptor indexing extension is 706 // enabled, that the descriptor has been initialized. If the reference is 707 // invalid, a record is written to the debug output buffer (if space allows) 708 // and a null value is returned. This pass is designed to support bindless 709 // validation in the Vulkan validation layers. 710 // 711 // TODO(greg-lunarg): Add support for buffer references. Currently only does 712 // checking for image references. 713 // 714 // Dead code elimination should be run after this pass as the original, 715 // potentially invalid code is not removed and could cause undefined behavior, 716 // including crashes. It may also be beneficial to run Simplification 717 // (ie Constant Propagation), DeadBranchElim and BlockMerge after this pass to 718 // optimize instrument code involving the testing of compile-time constants. 719 // It is also generally recommended that this pass (and all 720 // instrumentation passes) be run after any legalization and optimization 721 // passes. This will give better analysis for the instrumentation and avoid 722 // potentially de-optimizing the instrument code, for example, inlining 723 // the debug record output function throughout the module. 724 // 725 // The instrumentation will read and write buffers in debug 726 // descriptor set |desc_set|. It will write |shader_id| in each output record 727 // to identify the shader module which generated the record. 728 // |desc_length_enable| controls instrumentation of runtime descriptor array 729 // references, |desc_init_enable| controls instrumentation of descriptor 730 // initialization checking, and |buff_oob_enable| controls instrumentation 731 // of storage and uniform buffer bounds checking, all of which require input 732 // buffer support. |texbuff_oob_enable| controls instrumentation of texel 733 // buffers, which does not require input buffer support. 734 Optimizer::PassToken CreateInstBindlessCheckPass( 735 uint32_t desc_set, uint32_t shader_id, bool desc_length_enable = false, 736 bool desc_init_enable = false, bool buff_oob_enable = false, 737 bool texbuff_oob_enable = false); 738 739 // Create a pass to instrument physical buffer address checking 740 // This pass instruments all physical buffer address references to check that 741 // all referenced bytes fall in a valid buffer. If the reference is 742 // invalid, a record is written to the debug output buffer (if space allows) 743 // and a null value is returned. This pass is designed to support buffer 744 // address validation in the Vulkan validation layers. 745 // 746 // Dead code elimination should be run after this pass as the original, 747 // potentially invalid code is not removed and could cause undefined behavior, 748 // including crashes. Instruction simplification would likely also be 749 // beneficial. It is also generally recommended that this pass (and all 750 // instrumentation passes) be run after any legalization and optimization 751 // passes. This will give better analysis for the instrumentation and avoid 752 // potentially de-optimizing the instrument code, for example, inlining 753 // the debug record output function throughout the module. 754 // 755 // The instrumentation will read and write buffers in debug 756 // descriptor set |desc_set|. It will write |shader_id| in each output record 757 // to identify the shader module which generated the record. 758 Optimizer::PassToken CreateInstBuffAddrCheckPass(uint32_t desc_set, 759 uint32_t shader_id); 760 761 // Create a pass to instrument OpDebugPrintf instructions. 762 // This pass replaces all OpDebugPrintf instructions with instructions to write 763 // a record containing the string id and the all specified values into a special 764 // printf output buffer (if space allows). This pass is designed to support 765 // the printf validation in the Vulkan validation layers. 766 // 767 // The instrumentation will write buffers in debug descriptor set |desc_set|. 768 // It will write |shader_id| in each output record to identify the shader 769 // module which generated the record. 770 Optimizer::PassToken CreateInstDebugPrintfPass(uint32_t desc_set, 771 uint32_t shader_id); 772 773 // Create a pass to upgrade to the VulkanKHR memory model. 774 // This pass upgrades the Logical GLSL450 memory model to Logical VulkanKHR. 775 // Additionally, it modifies memory, image, atomic and barrier operations to 776 // conform to that model's requirements. 777 Optimizer::PassToken CreateUpgradeMemoryModelPass(); 778 779 // Create a pass to do code sinking. Code sinking is a transformation 780 // where an instruction is moved into a more deeply nested construct. 781 Optimizer::PassToken CreateCodeSinkingPass(); 782 783 // Create a pass to fix incorrect storage classes. In order to make code 784 // generation simpler, DXC may generate code where the storage classes do not 785 // match up correctly. This pass will fix the errors that it can. 786 Optimizer::PassToken CreateFixStorageClassPass(); 787 788 // Creates a graphics robust access pass. 789 // 790 // This pass injects code to clamp indexed accesses to buffers and internal 791 // arrays, providing guarantees satisfying Vulkan's robustBufferAccess rules. 792 // 793 // TODO(dneto): Clamps coordinates and sample index for pointer calculations 794 // into storage images (OpImageTexelPointer). For an cube array image, it 795 // assumes the maximum layer count times 6 is at most 0xffffffff. 796 // 797 // NOTE: This pass will fail with a message if: 798 // - The module is not a Shader module. 799 // - The module declares VariablePointers, VariablePointersStorageBuffer, or 800 // RuntimeDescriptorArrayEXT capabilities. 801 // - The module uses an addressing model other than Logical 802 // - Access chain indices are wider than 64 bits. 803 // - Access chain index for a struct is not an OpConstant integer or is out 804 // of range. (The module is already invalid if that is the case.) 805 // - TODO(dneto): The OpImageTexelPointer coordinate component is not 32-bits 806 // wide. 807 // 808 // NOTE: Access chain indices are always treated as signed integers. So 809 // if an array has a fixed size of more than 2^31 elements, then elements 810 // from 2^31 and above are never accessible with a 32-bit index, 811 // signed or unsigned. For this case, this pass will clamp the index 812 // between 0 and at 2^31-1, inclusive. 813 // Similarly, if an array has more then 2^15 element and is accessed with 814 // a 16-bit index, then elements from 2^15 and above are not accessible. 815 // In this case, the pass will clamp the index between 0 and 2^15-1 816 // inclusive. 817 Optimizer::PassToken CreateGraphicsRobustAccessPass(); 818 819 // Create descriptor scalar replacement pass. 820 // This pass replaces every array variable |desc| that has a DescriptorSet and 821 // Binding decorations with a new variable for each element of the array. 822 // Suppose |desc| was bound at binding |b|. Then the variable corresponding to 823 // |desc[i]| will have binding |b+i|. The descriptor set will be the same. It 824 // is assumed that no other variable already has a binding that will used by one 825 // of the new variables. If not, the pass will generate invalid Spir-V. All 826 // accesses to |desc| must be OpAccessChain instructions with a literal index 827 // for the first index. 828 Optimizer::PassToken CreateDescriptorScalarReplacementPass(); 829 830 // Create a pass to replace each OpKill instruction with a function call to a 831 // function that has a single OpKill. Also replace each OpTerminateInvocation 832 // instruction with a function call to a function that has a single 833 // OpTerminateInvocation. This allows more code to be inlined. 834 Optimizer::PassToken CreateWrapOpKillPass(); 835 836 // Replaces the extensions VK_AMD_shader_ballot,VK_AMD_gcn_shader, and 837 // VK_AMD_shader_trinary_minmax with equivalent code using core instructions and 838 // capabilities. 839 Optimizer::PassToken CreateAmdExtToKhrPass(); 840 841 } // namespace spvtools 842 843 #endif // INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_ 844