• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2016 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
16 #define INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
17 
18 #include <memory>
19 #include <ostream>
20 #include <string>
21 #include <unordered_map>
22 #include <vector>
23 
24 #include "libspirv.hpp"
25 
26 namespace spvtools {
27 
28 namespace opt {
29 class Pass;
30 }
31 
32 // C++ interface for SPIR-V optimization functionalities. It wraps the context
33 // (including target environment and the corresponding SPIR-V grammar) and
34 // provides methods for registering optimization passes and optimizing.
35 //
36 // Instances of this class provides basic thread-safety guarantee.
37 class Optimizer {
38  public:
39   // The token for an optimization pass. It is returned via one of the
40   // Create*Pass() standalone functions at the end of this header file and
41   // consumed by the RegisterPass() method. Tokens are one-time objects that
42   // only support move; copying is not allowed.
43   struct PassToken {
44     struct Impl;  // Opaque struct for holding inernal data.
45 
46     PassToken(std::unique_ptr<Impl>);
47 
48     // Tokens for built-in passes should be created using Create*Pass functions
49     // below; for out-of-tree passes, use this constructor instead.
50     // Note that this API isn't guaranteed to be stable and may change without
51     // preserving source or binary compatibility in the future.
52     PassToken(std::unique_ptr<opt::Pass>&& pass);
53 
54     // Tokens can only be moved. Copying is disabled.
55     PassToken(const PassToken&) = delete;
56     PassToken(PassToken&&);
57     PassToken& operator=(const PassToken&) = delete;
58     PassToken& operator=(PassToken&&);
59 
60     ~PassToken();
61 
62     std::unique_ptr<Impl> impl_;  // Unique pointer to internal data.
63   };
64 
65   // Constructs an instance with the given target |env|, which is used to decode
66   // the binaries to be optimized later.
67   //
68   // The instance will have an empty message consumer, which ignores all
69   // messages from the library. Use SetMessageConsumer() to supply a consumer
70   // if messages are of concern.
71   explicit Optimizer(spv_target_env env);
72 
73   // Disables copy/move constructor/assignment operations.
74   Optimizer(const Optimizer&) = delete;
75   Optimizer(Optimizer&&) = delete;
76   Optimizer& operator=(const Optimizer&) = delete;
77   Optimizer& operator=(Optimizer&&) = delete;
78 
79   // Destructs this instance.
80   ~Optimizer();
81 
82   // Sets the message consumer to the given |consumer|. The |consumer| will be
83   // invoked once for each message communicated from the library.
84   void SetMessageConsumer(MessageConsumer consumer);
85 
86   // Returns a reference to the registered message consumer.
87   const MessageConsumer& consumer() const;
88 
89   // Registers the given |pass| to this optimizer. Passes will be run in the
90   // exact order of registration. The token passed in will be consumed by this
91   // method.
92   Optimizer& RegisterPass(PassToken&& pass);
93 
94   // Registers passes that attempt to improve performance of generated code.
95   // This sequence of passes is subject to constant review and will change
96   // from time to time.
97   Optimizer& RegisterPerformancePasses();
98 
99   // Registers passes that attempt to improve the size of generated code.
100   // This sequence of passes is subject to constant review and will change
101   // from time to time.
102   Optimizer& RegisterSizePasses();
103 
104   // Registers passes that attempt to legalize the generated code.
105   //
106   // Note: this recipe is specially designed for legalizing SPIR-V. It should be
107   // used by compilers after translating HLSL source code literally. It should
108   // *not* be used by general workloads for performance or size improvement.
109   //
110   // This sequence of passes is subject to constant review and will change
111   // from time to time.
112   Optimizer& RegisterLegalizationPasses();
113 
114   // Register passes specified in the list of |flags|.  Each flag must be a
115   // string of a form accepted by Optimizer::FlagHasValidForm().
116   //
117   // If the list of flags contains an invalid entry, it returns false and an
118   // error message is emitted to the MessageConsumer object (use
119   // Optimizer::SetMessageConsumer to define a message consumer, if needed).
120   //
121   // If all the passes are registered successfully, it returns true.
122   bool RegisterPassesFromFlags(const std::vector<std::string>& flags);
123 
124   // Registers the optimization pass associated with |flag|.  This only accepts
125   // |flag| values of the form "--pass_name[=pass_args]".  If no such pass
126   // exists, it returns false.  Otherwise, the pass is registered and it returns
127   // true.
128   //
129   // The following flags have special meaning:
130   //
131   // -O: Registers all performance optimization passes
132   //     (Optimizer::RegisterPerformancePasses)
133   //
134   // -Os: Registers all size optimization passes
135   //      (Optimizer::RegisterSizePasses).
136   //
137   // --legalize-hlsl: Registers all passes that legalize SPIR-V generated by an
138   //                  HLSL front-end.
139   bool RegisterPassFromFlag(const std::string& flag);
140 
141   // Validates that |flag| has a valid format.  Strings accepted:
142   //
143   // --pass_name[=pass_args]
144   // -O
145   // -Os
146   //
147   // If |flag| takes one of the forms above, it returns true.  Otherwise, it
148   // returns false.
149   bool FlagHasValidForm(const std::string& flag) const;
150 
151   // Allows changing, after creation time, the target environment to be
152   // optimized for and validated.  Should be called before calling Run().
153   void SetTargetEnv(const spv_target_env env);
154 
155   // Optimizes the given SPIR-V module |original_binary| and writes the
156   // optimized binary into |optimized_binary|. The optimized binary uses
157   // the same SPIR-V version as the original binary.
158   //
159   // Returns true on successful optimization, whether or not the module is
160   // modified. Returns false if |original_binary| fails to validate or if errors
161   // occur when processing |original_binary| using any of the registered passes.
162   // In that case, no further passes are executed and the contents in
163   // |optimized_binary| may be invalid.
164   //
165   // By default, the binary is validated before any transforms are performed,
166   // and optionally after each transform.  Validation uses SPIR-V spec rules
167   // for the SPIR-V version named in the binary's header (at word offset 1).
168   // Additionally, if the target environment is a client API (such as
169   // Vulkan 1.1), then validate for that client API version, to the extent
170   // that it is verifiable from data in the binary itself.
171   //
172   // It's allowed to alias |original_binary| to the start of |optimized_binary|.
173   bool Run(const uint32_t* original_binary, size_t original_binary_size,
174            std::vector<uint32_t>* optimized_binary) const;
175 
176   // DEPRECATED: Same as above, except passes |options| to the validator when
177   // trying to validate the binary.  If |skip_validation| is true, then the
178   // caller is guaranteeing that |original_binary| is valid, and the validator
179   // will not be run.  The |max_id_bound| is the limit on the max id in the
180   // module.
181   bool Run(const uint32_t* original_binary, const size_t original_binary_size,
182            std::vector<uint32_t>* optimized_binary,
183            const ValidatorOptions& options, bool skip_validation) const;
184 
185   // Same as above, except it takes an options object.  See the documentation
186   // for |OptimizerOptions| to see which options can be set.
187   //
188   // By default, the binary is validated before any transforms are performed,
189   // and optionally after each transform.  Validation uses SPIR-V spec rules
190   // for the SPIR-V version named in the binary's header (at word offset 1).
191   // Additionally, if the target environment is a client API (such as
192   // Vulkan 1.1), then validate for that client API version, to the extent
193   // that it is verifiable from data in the binary itself, or from the
194   // validator options set on the optimizer options.
195   bool Run(const uint32_t* original_binary, const size_t original_binary_size,
196            std::vector<uint32_t>* optimized_binary,
197            const spv_optimizer_options opt_options) const;
198 
199   // Returns a vector of strings with all the pass names added to this
200   // optimizer's pass manager. These strings are valid until the associated
201   // pass manager is destroyed.
202   std::vector<const char*> GetPassNames() const;
203 
204   // Sets the option to print the disassembly before each pass and after the
205   // last pass.  If |out| is null, then no output is generated.  Otherwise,
206   // output is sent to the |out| output stream.
207   Optimizer& SetPrintAll(std::ostream* out);
208 
209   // Sets the option to print the resource utilization of each pass. If |out|
210   // is null, then no output is generated. Otherwise, output is sent to the
211   // |out| output stream.
212   Optimizer& SetTimeReport(std::ostream* out);
213 
214   // Sets the option to validate the module after each pass.
215   Optimizer& SetValidateAfterAll(bool validate);
216 
217  private:
218   struct Impl;                  // Opaque struct for holding internal data.
219   std::unique_ptr<Impl> impl_;  // Unique pointer to internal data.
220 };
221 
222 // Creates a null pass.
223 // A null pass does nothing to the SPIR-V module to be optimized.
224 Optimizer::PassToken CreateNullPass();
225 
226 // Creates a strip-debug-info pass.
227 // A strip-debug-info pass removes all debug instructions (as documented in
228 // Section 3.32.2 of the SPIR-V spec) of the SPIR-V module to be optimized.
229 Optimizer::PassToken CreateStripDebugInfoPass();
230 
231 // Creates a strip-reflect-info pass.
232 // A strip-reflect-info pass removes all reflections instructions.
233 // For now, this is limited to removing decorations defined in
234 // SPV_GOOGLE_hlsl_functionality1.  The coverage may expand in
235 // the future.
236 Optimizer::PassToken CreateStripReflectInfoPass();
237 
238 // Creates an eliminate-dead-functions pass.
239 // An eliminate-dead-functions pass will remove all functions that are not in
240 // the call trees rooted at entry points and exported functions.  These
241 // functions are not needed because they will never be called.
242 Optimizer::PassToken CreateEliminateDeadFunctionsPass();
243 
244 // Creates an eliminate-dead-members pass.
245 // An eliminate-dead-members pass will remove all unused members of structures.
246 // This will not affect the data layout of the remaining members.
247 Optimizer::PassToken CreateEliminateDeadMembersPass();
248 
249 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
250 // to the default values in the form of string.
251 // A set-spec-constant-default-value pass sets the default values for the
252 // spec constants that have SpecId decorations (i.e., those defined by
253 // OpSpecConstant{|True|False} instructions).
254 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
255     const std::unordered_map<uint32_t, std::string>& id_value_map);
256 
257 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
258 // to the default values in the form of bit pattern.
259 // A set-spec-constant-default-value pass sets the default values for the
260 // spec constants that have SpecId decorations (i.e., those defined by
261 // OpSpecConstant{|True|False} instructions).
262 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
263     const std::unordered_map<uint32_t, std::vector<uint32_t>>& id_value_map);
264 
265 // Creates a flatten-decoration pass.
266 // A flatten-decoration pass replaces grouped decorations with equivalent
267 // ungrouped decorations.  That is, it replaces each OpDecorationGroup
268 // instruction and associated OpGroupDecorate and OpGroupMemberDecorate
269 // instructions with equivalent OpDecorate and OpMemberDecorate instructions.
270 // The pass does not attempt to preserve debug information for instructions
271 // it removes.
272 Optimizer::PassToken CreateFlattenDecorationPass();
273 
274 // Creates a freeze-spec-constant-value pass.
275 // A freeze-spec-constant pass specializes the value of spec constants to
276 // their default values. This pass only processes the spec constants that have
277 // SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or
278 // OpSpecConstantFalse instructions) and replaces them with their normal
279 // counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The
280 // corresponding SpecId annotation instructions will also be removed. This
281 // pass does not fold the newly added normal constants and does not process
282 // other spec constants defined by OpSpecConstantComposite or
283 // OpSpecConstantOp.
284 Optimizer::PassToken CreateFreezeSpecConstantValuePass();
285 
286 // Creates a fold-spec-constant-op-and-composite pass.
287 // A fold-spec-constant-op-and-composite pass folds spec constants defined by
288 // OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants
289 // defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or
290 // OpConstantComposite instructions. Note that spec constants defined with
291 // OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are
292 // not handled, as these instructions indicate their value are not determined
293 // and can be changed in future. A spec constant is foldable if all of its
294 // value(s) can be determined from the module. E.g., an integer spec constant
295 // defined with OpSpecConstantOp instruction can be folded if its value won't
296 // change later. This pass will replace the original OpSpecContantOp instruction
297 // with an OpConstant instruction. When folding composite spec constants,
298 // new instructions may be inserted to define the components of the composite
299 // constant first, then the original spec constants will be replaced by
300 // OpConstantComposite instructions.
301 //
302 // There are some operations not supported yet:
303 //   OpSConvert, OpFConvert, OpQuantizeToF16 and
304 //   all the operations under Kernel capability.
305 // TODO(qining): Add support for the operations listed above.
306 Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass();
307 
308 // Creates a unify-constant pass.
309 // A unify-constant pass de-duplicates the constants. Constants with the exact
310 // same value and identical form will be unified and only one constant will
311 // be kept for each unique pair of type and value.
312 // There are several cases not handled by this pass:
313 //  1) Constants defined by OpConstantNull instructions (null constants) and
314 //  constants defined by OpConstantFalse, OpConstant or OpConstantComposite
315 //  with value 0 (zero-valued normal constants) are not considered equivalent.
316 //  So null constants won't be used to replace zero-valued normal constants,
317 //  vice versa.
318 //  2) Whenever there are decorations to the constant's result id id, the
319 //  constant won't be handled, which means, it won't be used to replace any
320 //  other constants, neither can other constants replace it.
321 //  3) NaN in float point format with different bit patterns are not unified.
322 Optimizer::PassToken CreateUnifyConstantPass();
323 
324 // Creates a eliminate-dead-constant pass.
325 // A eliminate-dead-constant pass removes dead constants, including normal
326 // contants defined by OpConstant, OpConstantComposite, OpConstantTrue, or
327 // OpConstantFalse and spec constants defined by OpSpecConstant,
328 // OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or
329 // OpSpecConstantOp.
330 Optimizer::PassToken CreateEliminateDeadConstantPass();
331 
332 // Creates a strength-reduction pass.
333 // A strength-reduction pass will look for opportunities to replace an
334 // instruction with an equivalent and less expensive one.  For example,
335 // multiplying by a power of 2 can be replaced by a bit shift.
336 Optimizer::PassToken CreateStrengthReductionPass();
337 
338 // Creates a block merge pass.
339 // This pass searches for blocks with a single Branch to a block with no
340 // other predecessors and merges the blocks into a single block. Continue
341 // blocks and Merge blocks are not candidates for the second block.
342 //
343 // The pass is most useful after Dead Branch Elimination, which can leave
344 // such sequences of blocks. Merging them makes subsequent passes more
345 // effective, such as single block local store-load elimination.
346 //
347 // While this pass reduces the number of occurrences of this sequence, at
348 // this time it does not guarantee all such sequences are eliminated.
349 //
350 // Presence of phi instructions can inhibit this optimization. Handling
351 // these is left for future improvements.
352 Optimizer::PassToken CreateBlockMergePass();
353 
354 // Creates an exhaustive inline pass.
355 // An exhaustive inline pass attempts to exhaustively inline all function
356 // calls in all functions in an entry point call tree. The intent is to enable,
357 // albeit through brute force, analysis and optimization across function
358 // calls by subsequent optimization passes. As the inlining is exhaustive,
359 // there is no attempt to optimize for size or runtime performance. Functions
360 // that are not in the call tree of an entry point are not changed.
361 Optimizer::PassToken CreateInlineExhaustivePass();
362 
363 // Creates an opaque inline pass.
364 // An opaque inline pass inlines all function calls in all functions in all
365 // entry point call trees where the called function contains an opaque type
366 // in either its parameter types or return type. An opaque type is currently
367 // defined as Image, Sampler or SampledImage. The intent is to enable, albeit
368 // through brute force, analysis and optimization across these function calls
369 // by subsequent passes in order to remove the storing of opaque types which is
370 // not legal in Vulkan. Functions that are not in the call tree of an entry
371 // point are not changed.
372 Optimizer::PassToken CreateInlineOpaquePass();
373 
374 // Creates a single-block local variable load/store elimination pass.
375 // For every entry point function, do single block memory optimization of
376 // function variables referenced only with non-access-chain loads and stores.
377 // For each targeted variable load, if previous store to that variable in the
378 // block, replace the load's result id with the value id of the store.
379 // If previous load within the block, replace the current load's result id
380 // with the previous load's result id. In either case, delete the current
381 // load. Finally, check if any remaining stores are useless, and delete store
382 // and variable if possible.
383 //
384 // The presence of access chain references and function calls can inhibit
385 // the above optimization.
386 //
387 // Only modules with relaxed logical addressing (see opt/instruction.h) are
388 // currently processed.
389 //
390 // This pass is most effective if preceeded by Inlining and
391 // LocalAccessChainConvert. This pass will reduce the work needed to be done
392 // by LocalSingleStoreElim and LocalMultiStoreElim.
393 //
394 // Only functions in the call tree of an entry point are processed.
395 Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass();
396 
397 // Create dead branch elimination pass.
398 // For each entry point function, this pass will look for SelectionMerge
399 // BranchConditionals with constant condition and convert to a Branch to
400 // the indicated label. It will delete resulting dead blocks.
401 //
402 // For all phi functions in merge block, replace all uses with the id
403 // corresponding to the living predecessor.
404 //
405 // Note that some branches and blocks may be left to avoid creating invalid
406 // control flow. Improving this is left to future work.
407 //
408 // This pass is most effective when preceeded by passes which eliminate
409 // local loads and stores, effectively propagating constant values where
410 // possible.
411 Optimizer::PassToken CreateDeadBranchElimPass();
412 
413 // Creates an SSA local variable load/store elimination pass.
414 // For every entry point function, eliminate all loads and stores of function
415 // scope variables only referenced with non-access-chain loads and stores.
416 // Eliminate the variables as well.
417 //
418 // The presence of access chain references and function calls can inhibit
419 // the above optimization.
420 //
421 // Only shader modules with relaxed logical addressing (see opt/instruction.h)
422 // are currently processed. Currently modules with any extensions enabled are
423 // not processed. This is left for future work.
424 //
425 // This pass is most effective if preceeded by Inlining and
426 // LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
427 // will reduce the work that this pass has to do.
428 Optimizer::PassToken CreateLocalMultiStoreElimPass();
429 
430 // Creates a local access chain conversion pass.
431 // A local access chain conversion pass identifies all function scope
432 // variables which are accessed only with loads, stores and access chains
433 // with constant indices. It then converts all loads and stores of such
434 // variables into equivalent sequences of loads, stores, extracts and inserts.
435 //
436 // This pass only processes entry point functions. It currently only converts
437 // non-nested, non-ptr access chains. It does not process modules with
438 // non-32-bit integer types present. Optional memory access options on loads
439 // and stores are ignored as we are only processing function scope variables.
440 //
441 // This pass unifies access to these variables to a single mode and simplifies
442 // subsequent analysis and elimination of these variables along with their
443 // loads and stores allowing values to propagate to their points of use where
444 // possible.
445 Optimizer::PassToken CreateLocalAccessChainConvertPass();
446 
447 // Creates a local single store elimination pass.
448 // For each entry point function, this pass eliminates loads and stores for
449 // function scope variable that are stored to only once, where possible. Only
450 // whole variable loads and stores are eliminated; access-chain references are
451 // not optimized. Replace all loads of such variables with the value that is
452 // stored and eliminate any resulting dead code.
453 //
454 // Currently, the presence of access chains and function calls can inhibit this
455 // pass, however the Inlining and LocalAccessChainConvert passes can make it
456 // more effective. In additional, many non-load/store memory operations are
457 // not supported and will prohibit optimization of a function. Support of
458 // these operations are future work.
459 //
460 // Only shader modules with relaxed logical addressing (see opt/instruction.h)
461 // are currently processed.
462 //
463 // This pass will reduce the work needed to be done by LocalSingleBlockElim
464 // and LocalMultiStoreElim and can improve the effectiveness of other passes
465 // such as DeadBranchElimination which depend on values for their analysis.
466 Optimizer::PassToken CreateLocalSingleStoreElimPass();
467 
468 // Creates an insert/extract elimination pass.
469 // This pass processes each entry point function in the module, searching for
470 // extracts on a sequence of inserts. It further searches the sequence for an
471 // insert with indices identical to the extract. If such an insert can be
472 // found before hitting a conflicting insert, the extract's result id is
473 // replaced with the id of the values from the insert.
474 //
475 // Besides removing extracts this pass enables subsequent dead code elimination
476 // passes to delete the inserts. This pass performs best after access chains are
477 // converted to inserts and extracts and local loads and stores are eliminated.
478 Optimizer::PassToken CreateInsertExtractElimPass();
479 
480 // Creates a dead insert elimination pass.
481 // This pass processes each entry point function in the module, searching for
482 // unreferenced inserts into composite types. These are most often unused
483 // stores to vector components. They are unused because they are never
484 // referenced, or because there is another insert to the same component between
485 // the insert and the reference. After removing the inserts, dead code
486 // elimination is attempted on the inserted values.
487 //
488 // This pass performs best after access chains are converted to inserts and
489 // extracts and local loads and stores are eliminated. While executing this
490 // pass can be advantageous on its own, it is also advantageous to execute
491 // this pass after CreateInsertExtractPass() as it will remove any unused
492 // inserts created by that pass.
493 Optimizer::PassToken CreateDeadInsertElimPass();
494 
495 // Create aggressive dead code elimination pass
496 // This pass eliminates unused code from the module. In addition,
497 // it detects and eliminates code which may have spurious uses but which do
498 // not contribute to the output of the function. The most common cause of
499 // such code sequences is summations in loops whose result is no longer used
500 // due to dead code elimination. This optimization has additional compile
501 // time cost over standard dead code elimination.
502 //
503 // This pass only processes entry point functions. It also only processes
504 // shaders with relaxed logical addressing (see opt/instruction.h). It
505 // currently will not process functions with function calls. Unreachable
506 // functions are deleted.
507 //
508 // This pass will be made more effective by first running passes that remove
509 // dead control flow and inlines function calls.
510 //
511 // This pass can be especially useful after running Local Access Chain
512 // Conversion, which tends to cause cycles of dead code to be left after
513 // Store/Load elimination passes are completed. These cycles cannot be
514 // eliminated with standard dead code elimination.
515 Optimizer::PassToken CreateAggressiveDCEPass();
516 
517 // Creates an empty pass.
518 // This is deprecated and will be removed.
519 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
520 //                https://github.com/KhronosGroup/glslang/pull/2440
521 Optimizer::PassToken CreatePropagateLineInfoPass();
522 
523 // Creates an empty pass.
524 // This is deprecated and will be removed.
525 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
526 //                https://github.com/KhronosGroup/glslang/pull/2440
527 Optimizer::PassToken CreateRedundantLineInfoElimPass();
528 
529 // Creates a compact ids pass.
530 // The pass remaps result ids to a compact and gapless range starting from %1.
531 Optimizer::PassToken CreateCompactIdsPass();
532 
533 // Creates a remove duplicate pass.
534 // This pass removes various duplicates:
535 // * duplicate capabilities;
536 // * duplicate extended instruction imports;
537 // * duplicate types;
538 // * duplicate decorations.
539 Optimizer::PassToken CreateRemoveDuplicatesPass();
540 
541 // Creates a CFG cleanup pass.
542 // This pass removes cruft from the control flow graph of functions that are
543 // reachable from entry points and exported functions. It currently includes the
544 // following functionality:
545 //
546 // - Removal of unreachable basic blocks.
547 Optimizer::PassToken CreateCFGCleanupPass();
548 
549 // Create dead variable elimination pass.
550 // This pass will delete module scope variables, along with their decorations,
551 // that are not referenced.
552 Optimizer::PassToken CreateDeadVariableEliminationPass();
553 
554 // create merge return pass.
555 // changes functions that have multiple return statements so they have a single
556 // return statement.
557 //
558 // for structured control flow it is assumed that the only unreachable blocks in
559 // the function are trivial merge and continue blocks.
560 //
561 // a trivial merge block contains the label and an opunreachable instructions,
562 // nothing else.  a trivial continue block contain a label and an opbranch to
563 // the header, nothing else.
564 //
565 // these conditions are guaranteed to be met after running dead-branch
566 // elimination.
567 Optimizer::PassToken CreateMergeReturnPass();
568 
569 // Create value numbering pass.
570 // This pass will look for instructions in the same basic block that compute the
571 // same value, and remove the redundant ones.
572 Optimizer::PassToken CreateLocalRedundancyEliminationPass();
573 
574 // Create LICM pass.
575 // This pass will look for invariant instructions inside loops and hoist them to
576 // the loops preheader.
577 Optimizer::PassToken CreateLoopInvariantCodeMotionPass();
578 
579 // Creates a loop fission pass.
580 // This pass will split all top level loops whose register pressure exceedes the
581 // given |threshold|.
582 Optimizer::PassToken CreateLoopFissionPass(size_t threshold);
583 
584 // Creates a loop fusion pass.
585 // This pass will look for adjacent loops that are compatible and legal to be
586 // fused. The fuse all such loops as long as the register usage for the fused
587 // loop stays under the threshold defined by |max_registers_per_loop|.
588 Optimizer::PassToken CreateLoopFusionPass(size_t max_registers_per_loop);
589 
590 // Creates a loop peeling pass.
591 // This pass will look for conditions inside a loop that are true or false only
592 // for the N first or last iteration. For loop with such condition, those N
593 // iterations of the loop will be executed outside of the main loop.
594 // To limit code size explosion, the loop peeling can only happen if the code
595 // size growth for each loop is under |code_growth_threshold|.
596 Optimizer::PassToken CreateLoopPeelingPass();
597 
598 // Creates a loop unswitch pass.
599 // This pass will look for loop independent branch conditions and move the
600 // condition out of the loop and version the loop based on the taken branch.
601 // Works best after LICM and local multi store elimination pass.
602 Optimizer::PassToken CreateLoopUnswitchPass();
603 
604 // Create global value numbering pass.
605 // This pass will look for instructions where the same value is computed on all
606 // paths leading to the instruction.  Those instructions are deleted.
607 Optimizer::PassToken CreateRedundancyEliminationPass();
608 
609 // Create scalar replacement pass.
610 // This pass replaces composite function scope variables with variables for each
611 // element if those elements are accessed individually.  The parameter is a
612 // limit on the number of members in the composite variable that the pass will
613 // consider replacing.
614 Optimizer::PassToken CreateScalarReplacementPass(uint32_t size_limit = 100);
615 
616 // Create a private to local pass.
617 // This pass looks for variables delcared in the private storage class that are
618 // used in only one function.  Those variables are moved to the function storage
619 // class in the function that they are used.
620 Optimizer::PassToken CreatePrivateToLocalPass();
621 
622 // Creates a conditional constant propagation (CCP) pass.
623 // This pass implements the SSA-CCP algorithm in
624 //
625 //      Constant propagation with conditional branches,
626 //      Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
627 //
628 // Constant values in expressions and conditional jumps are folded and
629 // simplified. This may reduce code size by removing never executed jump targets
630 // and computations with constant operands.
631 Optimizer::PassToken CreateCCPPass();
632 
633 // Creates a workaround driver bugs pass.  This pass attempts to work around
634 // a known driver bug (issue #1209) by identifying the bad code sequences and
635 // rewriting them.
636 //
637 // Current workaround: Avoid OpUnreachable instructions in loops.
638 Optimizer::PassToken CreateWorkaround1209Pass();
639 
640 // Creates a pass that converts if-then-else like assignments into OpSelect.
641 Optimizer::PassToken CreateIfConversionPass();
642 
643 // Creates a pass that will replace instructions that are not valid for the
644 // current shader stage by constants.  Has no effect on non-shader modules.
645 Optimizer::PassToken CreateReplaceInvalidOpcodePass();
646 
647 // Creates a pass that simplifies instructions using the instruction folder.
648 Optimizer::PassToken CreateSimplificationPass();
649 
650 // Create loop unroller pass.
651 // Creates a pass to unroll loops which have the "Unroll" loop control
652 // mask set. The loops must meet a specific criteria in order to be unrolled
653 // safely this criteria is checked before doing the unroll by the
654 // LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria
655 // won't be unrolled. See CanPerformUnroll LoopUtils.h for more information.
656 Optimizer::PassToken CreateLoopUnrollPass(bool fully_unroll, int factor = 0);
657 
658 // Create the SSA rewrite pass.
659 // This pass converts load/store operations on function local variables into
660 // operations on SSA IDs.  This allows SSA optimizers to act on these variables.
661 // Only variables that are local to the function and of supported types are
662 // processed (see IsSSATargetVar for details).
663 Optimizer::PassToken CreateSSARewritePass();
664 
665 // Create pass to convert relaxed precision instructions to half precision.
666 // This pass converts as many relaxed float32 arithmetic operations to half as
667 // possible. It converts any float32 operands to half if needed. It converts
668 // any resulting half precision values back to float32 as needed. No variables
669 // are changed. No image operations are changed.
670 //
671 // Best if run after function scope store/load and composite operation
672 // eliminations are run. Also best if followed by instruction simplification,
673 // redundancy elimination and DCE.
674 Optimizer::PassToken CreateConvertRelaxedToHalfPass();
675 
676 // Create relax float ops pass.
677 // This pass decorates all float32 result instructions with RelaxedPrecision
678 // if not already so decorated.
679 Optimizer::PassToken CreateRelaxFloatOpsPass();
680 
681 // Create copy propagate arrays pass.
682 // This pass looks to copy propagate memory references for arrays.  It looks
683 // for specific code patterns to recognize array copies.
684 Optimizer::PassToken CreateCopyPropagateArraysPass();
685 
686 // Create a vector dce pass.
687 // This pass looks for components of vectors that are unused, and removes them
688 // from the vector.  Note this would still leave around lots of dead code that
689 // a pass of ADCE will be able to remove.
690 Optimizer::PassToken CreateVectorDCEPass();
691 
692 // Create a pass to reduce the size of loads.
693 // This pass looks for loads of structures where only a few of its members are
694 // used.  It replaces the loads feeding an OpExtract with an OpAccessChain and
695 // a load of the specific elements.
696 Optimizer::PassToken CreateReduceLoadSizePass();
697 
698 // Create a pass to combine chained access chains.
699 // This pass looks for access chains fed by other access chains and combines
700 // them into a single instruction where possible.
701 Optimizer::PassToken CreateCombineAccessChainsPass();
702 
703 // Create a pass to instrument bindless descriptor checking
704 // This pass instruments all bindless references to check that descriptor
705 // array indices are inbounds, and if the descriptor indexing extension is
706 // enabled, that the descriptor has been initialized. If the reference is
707 // invalid, a record is written to the debug output buffer (if space allows)
708 // and a null value is returned. This pass is designed to support bindless
709 // validation in the Vulkan validation layers.
710 //
711 // TODO(greg-lunarg): Add support for buffer references. Currently only does
712 // checking for image references.
713 //
714 // Dead code elimination should be run after this pass as the original,
715 // potentially invalid code is not removed and could cause undefined behavior,
716 // including crashes. It may also be beneficial to run Simplification
717 // (ie Constant Propagation), DeadBranchElim and BlockMerge after this pass to
718 // optimize instrument code involving the testing of compile-time constants.
719 // It is also generally recommended that this pass (and all
720 // instrumentation passes) be run after any legalization and optimization
721 // passes. This will give better analysis for the instrumentation and avoid
722 // potentially de-optimizing the instrument code, for example, inlining
723 // the debug record output function throughout the module.
724 //
725 // The instrumentation will read and write buffers in debug
726 // descriptor set |desc_set|. It will write |shader_id| in each output record
727 // to identify the shader module which generated the record.
728 // |desc_length_enable| controls instrumentation of runtime descriptor array
729 // references, |desc_init_enable| controls instrumentation of descriptor
730 // initialization checking, and |buff_oob_enable| controls instrumentation
731 // of storage and uniform buffer bounds checking, all of which require input
732 // buffer support. |texbuff_oob_enable| controls instrumentation of texel
733 // buffers, which does not require input buffer support.
734 Optimizer::PassToken CreateInstBindlessCheckPass(
735     uint32_t desc_set, uint32_t shader_id, bool desc_length_enable = false,
736     bool desc_init_enable = false, bool buff_oob_enable = false,
737     bool texbuff_oob_enable = false);
738 
739 // Create a pass to instrument physical buffer address checking
740 // This pass instruments all physical buffer address references to check that
741 // all referenced bytes fall in a valid buffer. If the reference is
742 // invalid, a record is written to the debug output buffer (if space allows)
743 // and a null value is returned. This pass is designed to support buffer
744 // address validation in the Vulkan validation layers.
745 //
746 // Dead code elimination should be run after this pass as the original,
747 // potentially invalid code is not removed and could cause undefined behavior,
748 // including crashes. Instruction simplification would likely also be
749 // beneficial. It is also generally recommended that this pass (and all
750 // instrumentation passes) be run after any legalization and optimization
751 // passes. This will give better analysis for the instrumentation and avoid
752 // potentially de-optimizing the instrument code, for example, inlining
753 // the debug record output function throughout the module.
754 //
755 // The instrumentation will read and write buffers in debug
756 // descriptor set |desc_set|. It will write |shader_id| in each output record
757 // to identify the shader module which generated the record.
758 Optimizer::PassToken CreateInstBuffAddrCheckPass(uint32_t desc_set,
759                                                  uint32_t shader_id);
760 
761 // Create a pass to instrument OpDebugPrintf instructions.
762 // This pass replaces all OpDebugPrintf instructions with instructions to write
763 // a record containing the string id and the all specified values into a special
764 // printf output buffer (if space allows). This pass is designed to support
765 // the printf validation in the Vulkan validation layers.
766 //
767 // The instrumentation will write buffers in debug descriptor set |desc_set|.
768 // It will write |shader_id| in each output record to identify the shader
769 // module which generated the record.
770 Optimizer::PassToken CreateInstDebugPrintfPass(uint32_t desc_set,
771                                                uint32_t shader_id);
772 
773 // Create a pass to upgrade to the VulkanKHR memory model.
774 // This pass upgrades the Logical GLSL450 memory model to Logical VulkanKHR.
775 // Additionally, it modifies memory, image, atomic and barrier operations to
776 // conform to that model's requirements.
777 Optimizer::PassToken CreateUpgradeMemoryModelPass();
778 
779 // Create a pass to do code sinking.  Code sinking is a transformation
780 // where an instruction is moved into a more deeply nested construct.
781 Optimizer::PassToken CreateCodeSinkingPass();
782 
783 // Create a pass to fix incorrect storage classes.  In order to make code
784 // generation simpler, DXC may generate code where the storage classes do not
785 // match up correctly.  This pass will fix the errors that it can.
786 Optimizer::PassToken CreateFixStorageClassPass();
787 
788 // Creates a graphics robust access pass.
789 //
790 // This pass injects code to clamp indexed accesses to buffers and internal
791 // arrays, providing guarantees satisfying Vulkan's robustBufferAccess rules.
792 //
793 // TODO(dneto): Clamps coordinates and sample index for pointer calculations
794 // into storage images (OpImageTexelPointer).  For an cube array image, it
795 // assumes the maximum layer count times 6 is at most 0xffffffff.
796 //
797 // NOTE: This pass will fail with a message if:
798 // - The module is not a Shader module.
799 // - The module declares VariablePointers, VariablePointersStorageBuffer, or
800 //   RuntimeDescriptorArrayEXT capabilities.
801 // - The module uses an addressing model other than Logical
802 // - Access chain indices are wider than 64 bits.
803 // - Access chain index for a struct is not an OpConstant integer or is out
804 //   of range. (The module is already invalid if that is the case.)
805 // - TODO(dneto): The OpImageTexelPointer coordinate component is not 32-bits
806 // wide.
807 //
808 // NOTE: Access chain indices are always treated as signed integers.  So
809 //   if an array has a fixed size of more than 2^31 elements, then elements
810 //   from 2^31 and above are never accessible with a 32-bit index,
811 //   signed or unsigned.  For this case, this pass will clamp the index
812 //   between 0 and at 2^31-1, inclusive.
813 //   Similarly, if an array has more then 2^15 element and is accessed with
814 //   a 16-bit index, then elements from 2^15 and above are not accessible.
815 //   In this case, the pass will clamp the index between 0 and 2^15-1
816 //   inclusive.
817 Optimizer::PassToken CreateGraphicsRobustAccessPass();
818 
819 // Create descriptor scalar replacement pass.
820 // This pass replaces every array variable |desc| that has a DescriptorSet and
821 // Binding decorations with a new variable for each element of the array.
822 // Suppose |desc| was bound at binding |b|.  Then the variable corresponding to
823 // |desc[i]| will have binding |b+i|.  The descriptor set will be the same.  It
824 // is assumed that no other variable already has a binding that will used by one
825 // of the new variables.  If not, the pass will generate invalid Spir-V.  All
826 // accesses to |desc| must be OpAccessChain instructions with a literal index
827 // for the first index.
828 Optimizer::PassToken CreateDescriptorScalarReplacementPass();
829 
830 // Create a pass to replace each OpKill instruction with a function call to a
831 // function that has a single OpKill.  Also replace each OpTerminateInvocation
832 // instruction  with a function call to a function that has a single
833 // OpTerminateInvocation.  This allows more code to be inlined.
834 Optimizer::PassToken CreateWrapOpKillPass();
835 
836 // Replaces the extensions VK_AMD_shader_ballot,VK_AMD_gcn_shader, and
837 // VK_AMD_shader_trinary_minmax with equivalent code using core instructions and
838 // capabilities.
839 Optimizer::PassToken CreateAmdExtToKhrPass();
840 
841 }  // namespace spvtools
842 
843 #endif  // INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
844