1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_ROTATION2D_H 11 #define EIGEN_ROTATION2D_H 12 13 namespace Eigen { 14 15 /** \geometry_module \ingroup Geometry_Module 16 * 17 * \class Rotation2D 18 * 19 * \brief Represents a rotation/orientation in a 2 dimensional space. 20 * 21 * \tparam _Scalar the scalar type, i.e., the type of the coefficients 22 * 23 * This class is equivalent to a single scalar representing a counter clock wise rotation 24 * as a single angle in radian. It provides some additional features such as the automatic 25 * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar 26 * interface to Quaternion in order to facilitate the writing of generic algorithms 27 * dealing with rotations. 28 * 29 * \sa class Quaternion, class Transform 30 */ 31 32 namespace internal { 33 34 template<typename _Scalar> struct traits<Rotation2D<_Scalar> > 35 { 36 typedef _Scalar Scalar; 37 }; 38 } // end namespace internal 39 40 template<typename _Scalar> 41 class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2> 42 { 43 typedef RotationBase<Rotation2D<_Scalar>,2> Base; 44 45 public: 46 47 using Base::operator*; 48 49 enum { Dim = 2 }; 50 /** the scalar type of the coefficients */ 51 typedef _Scalar Scalar; 52 typedef Matrix<Scalar,2,1> Vector2; 53 typedef Matrix<Scalar,2,2> Matrix2; 54 55 protected: 56 57 Scalar m_angle; 58 59 public: 60 61 /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ 62 EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {} 63 64 /** Default constructor wihtout initialization. The represented rotation is undefined. */ 65 EIGEN_DEVICE_FUNC Rotation2D() {} 66 67 /** Construct a 2D rotation from a 2x2 rotation matrix \a mat. 68 * 69 * \sa fromRotationMatrix() 70 */ 71 template<typename Derived> 72 EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m) 73 { 74 fromRotationMatrix(m.derived()); 75 } 76 77 /** \returns the rotation angle */ 78 EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; } 79 80 /** \returns a read-write reference to the rotation angle */ 81 EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; } 82 83 /** \returns the rotation angle in [0,2pi] */ 84 EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const { 85 Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); 86 return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp; 87 } 88 89 /** \returns the rotation angle in [-pi,pi] */ 90 EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const { 91 Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI)); 92 if(tmp>Scalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI); 93 else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI); 94 return tmp; 95 } 96 97 /** \returns the inverse rotation */ 98 EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); } 99 100 /** Concatenates two rotations */ 101 EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const 102 { return Rotation2D(m_angle + other.m_angle); } 103 104 /** Concatenates two rotations */ 105 EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other) 106 { m_angle += other.m_angle; return *this; } 107 108 /** Applies the rotation to a 2D vector */ 109 EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const 110 { return toRotationMatrix() * vec; } 111 112 template<typename Derived> 113 EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); 114 EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const; 115 116 /** Set \c *this from a 2x2 rotation matrix \a mat. 117 * In other words, this function extract the rotation angle from the rotation matrix. 118 * 119 * This method is an alias for fromRotationMatrix() 120 * 121 * \sa fromRotationMatrix() 122 */ 123 template<typename Derived> 124 EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m) 125 { return fromRotationMatrix(m.derived()); } 126 127 /** \returns the spherical interpolation between \c *this and \a other using 128 * parameter \a t. It is in fact equivalent to a linear interpolation. 129 */ 130 EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const 131 { 132 Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle(); 133 return Rotation2D(m_angle + dist*t); 134 } 135 136 /** \returns \c *this with scalar type casted to \a NewScalarType 137 * 138 * Note that if \a NewScalarType is equal to the current scalar type of \c *this 139 * then this function smartly returns a const reference to \c *this. 140 */ 141 template<typename NewScalarType> 142 EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const 143 { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); } 144 145 /** Copy constructor with scalar type conversion */ 146 template<typename OtherScalarType> 147 EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) 148 { 149 m_angle = Scalar(other.angle()); 150 } 151 152 EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); } 153 154 /** \returns \c true if \c *this is approximately equal to \a other, within the precision 155 * determined by \a prec. 156 * 157 * \sa MatrixBase::isApprox() */ 158 EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const 159 { return internal::isApprox(m_angle,other.m_angle, prec); } 160 161 }; 162 163 /** \ingroup Geometry_Module 164 * single precision 2D rotation type */ 165 typedef Rotation2D<float> Rotation2Df; 166 /** \ingroup Geometry_Module 167 * double precision 2D rotation type */ 168 typedef Rotation2D<double> Rotation2Dd; 169 170 /** Set \c *this from a 2x2 rotation matrix \a mat. 171 * In other words, this function extract the rotation angle 172 * from the rotation matrix. 173 */ 174 template<typename Scalar> 175 template<typename Derived> 176 EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) 177 { 178 EIGEN_USING_STD_MATH(atan2) 179 EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) 180 m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0)); 181 return *this; 182 } 183 184 /** Constructs and \returns an equivalent 2x2 rotation matrix. 185 */ 186 template<typename Scalar> 187 typename Rotation2D<Scalar>::Matrix2 188 EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const 189 { 190 EIGEN_USING_STD_MATH(sin) 191 EIGEN_USING_STD_MATH(cos) 192 Scalar sinA = sin(m_angle); 193 Scalar cosA = cos(m_angle); 194 return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); 195 } 196 197 } // end namespace Eigen 198 199 #endif // EIGEN_ROTATION2D_H 200