1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 // work around "uninitialized" warnings and give that option some testing
12 #define EIGEN_INITIALIZE_MATRICES_BY_ZERO
13
14 #ifndef EIGEN_NO_STATIC_ASSERT
15 #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them
16 #endif
17
18 #if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3)
19
20 #ifndef EIGEN_DONT_VECTORIZE
21 #define EIGEN_DONT_VECTORIZE
22 #endif
23
24 #endif
25
26 static bool g_called;
27 #define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); }
28
29 #include "main.h"
30
31 using namespace std;
32
33 #define VERIFY_MIX_SCALAR(XPR,REF) \
34 g_called = false; \
35 VERIFY_IS_APPROX(XPR,REF); \
36 VERIFY( g_called && #XPR" not properly optimized");
37
mixingtypes(int size=SizeAtCompileType)38 template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
39 {
40 typedef std::complex<float> CF;
41 typedef std::complex<double> CD;
42 typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
43 typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
44 typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
45 typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
46 typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
47 typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
48 typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
49 typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
50
51 Mat_f mf = Mat_f::Random(size,size);
52 Mat_d md = mf.template cast<double>();
53 //Mat_d rd = md;
54 Mat_cf mcf = Mat_cf::Random(size,size);
55 Mat_cd mcd = mcf.template cast<complex<double> >();
56 Mat_cd rcd = mcd;
57 Vec_f vf = Vec_f::Random(size,1);
58 Vec_d vd = vf.template cast<double>();
59 Vec_cf vcf = Vec_cf::Random(size,1);
60 Vec_cd vcd = vcf.template cast<complex<double> >();
61 float sf = internal::random<float>();
62 double sd = internal::random<double>();
63 complex<float> scf = internal::random<complex<float> >();
64 complex<double> scd = internal::random<complex<double> >();
65
66 mf+mf;
67
68 float epsf = std::sqrt(std::numeric_limits<float> ::min EIGEN_EMPTY ());
69 double epsd = std::sqrt(std::numeric_limits<double>::min EIGEN_EMPTY ());
70
71 while(std::abs(sf )<epsf) sf = internal::random<float>();
72 while(std::abs(sd )<epsd) sf = internal::random<double>();
73 while(std::abs(scf)<epsf) scf = internal::random<CF>();
74 while(std::abs(scd)<epsd) scd = internal::random<CD>();
75
76 // VERIFY_RAISES_ASSERT(mf+md); // does not even compile
77
78 #ifdef EIGEN_DONT_VECTORIZE
79 VERIFY_RAISES_ASSERT(vf=vd);
80 VERIFY_RAISES_ASSERT(vf+=vd);
81 #endif
82
83 // check scalar products
84 VERIFY_MIX_SCALAR(vcf * sf , vcf * complex<float>(sf));
85 VERIFY_MIX_SCALAR(sd * vcd , complex<double>(sd) * vcd);
86 VERIFY_MIX_SCALAR(vf * scf , vf.template cast<complex<float> >() * scf);
87 VERIFY_MIX_SCALAR(scd * vd , scd * vd.template cast<complex<double> >());
88
89 VERIFY_MIX_SCALAR(vcf * 2 , vcf * complex<float>(2));
90 VERIFY_MIX_SCALAR(vcf * 2.1 , vcf * complex<float>(2.1));
91 VERIFY_MIX_SCALAR(2 * vcf, vcf * complex<float>(2));
92 VERIFY_MIX_SCALAR(2.1 * vcf , vcf * complex<float>(2.1));
93
94 // check scalar quotients
95 VERIFY_MIX_SCALAR(vcf / sf , vcf / complex<float>(sf));
96 VERIFY_MIX_SCALAR(vf / scf , vf.template cast<complex<float> >() / scf);
97 VERIFY_MIX_SCALAR(vf.array() / scf, vf.template cast<complex<float> >().array() / scf);
98 VERIFY_MIX_SCALAR(scd / vd.array() , scd / vd.template cast<complex<double> >().array());
99
100 // check scalar increment
101 VERIFY_MIX_SCALAR(vcf.array() + sf , vcf.array() + complex<float>(sf));
102 VERIFY_MIX_SCALAR(sd + vcd.array(), complex<double>(sd) + vcd.array());
103 VERIFY_MIX_SCALAR(vf.array() + scf, vf.template cast<complex<float> >().array() + scf);
104 VERIFY_MIX_SCALAR(scd + vd.array() , scd + vd.template cast<complex<double> >().array());
105
106 // check scalar subtractions
107 VERIFY_MIX_SCALAR(vcf.array() - sf , vcf.array() - complex<float>(sf));
108 VERIFY_MIX_SCALAR(sd - vcd.array(), complex<double>(sd) - vcd.array());
109 VERIFY_MIX_SCALAR(vf.array() - scf, vf.template cast<complex<float> >().array() - scf);
110 VERIFY_MIX_SCALAR(scd - vd.array() , scd - vd.template cast<complex<double> >().array());
111
112 // check scalar powers
113 VERIFY_MIX_SCALAR( pow(vcf.array(), sf), Eigen::pow(vcf.array(), complex<float>(sf)) );
114 VERIFY_MIX_SCALAR( vcf.array().pow(sf) , Eigen::pow(vcf.array(), complex<float>(sf)) );
115 VERIFY_MIX_SCALAR( pow(sd, vcd.array()), Eigen::pow(complex<double>(sd), vcd.array()) );
116 VERIFY_MIX_SCALAR( Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
117 VERIFY_MIX_SCALAR( vf.array().pow(scf) , Eigen::pow(vf.template cast<complex<float> >().array(), scf) );
118 VERIFY_MIX_SCALAR( Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast<complex<double> >().array()) );
119
120 // check dot product
121 vf.dot(vf);
122 #if 0 // we get other compilation errors here than just static asserts
123 VERIFY_RAISES_ASSERT(vd.dot(vf));
124 #endif
125 VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >()));
126
127 // check diagonal product
128 VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf);
129 VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >());
130 VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal());
131 VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal());
132
133 // vd.asDiagonal() * mf; // does not even compile
134 // vcd.asDiagonal() * mf; // does not even compile
135
136 // check inner product
137 VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value());
138
139 // check outer product
140 VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
141
142 // coeff wise product
143
144 VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval());
145
146 Mat_cd mcd2 = mcd;
147 VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
148
149 // check matrix-matrix products
150 VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
151 VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
152 VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
153 VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());
154
155 VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
156 VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
157 VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
158 VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());
159
160 VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast<CD>().eval().adjoint()*mcd);
161 VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast<CD>());
162 VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast<CD>().eval().adjoint()*mcd.adjoint());
163 VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast<CD>().adjoint());
164 VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast<CD>().eval()*mcd.adjoint());
165 VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast<CD>().adjoint());
166
167 VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast<CF>().eval().adjoint()*mcf);
168 VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast<CF>());
169 VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast<CF>().eval().adjoint()*mcf.adjoint());
170 VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast<CF>().adjoint());
171 VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast<CF>().eval()*mcf.adjoint());
172 VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast<CF>().adjoint());
173
174 VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
175 VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
176 VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
177 VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());
178
179 VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval());
180 VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
181 VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf);
182 VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);
183
184 VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
185 VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
186 VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
187 VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());
188
189 VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast<CD>().eval());
190 VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
191 VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast<CD>().eval()*mcd);
192 VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
193
194 VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>());
195 VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Lower>());
196 VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView<Upper>(), sd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Upper>());
197 VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView<Lower>(), scd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Lower>());
198 VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>());
199 VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Upper>());
200 VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Lower>());
201 VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Upper>());
202
203 // Not supported yet: trmm
204 // VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(), sd*mcd*md.template cast<CD>().eval().template triangularView<Lower>());
205 // VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template cast<CD>().eval().template triangularView<Upper>());
206 // VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(), sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>());
207 // VERIFY_IS_APPROX(scd*md*mcd.template triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>());
208
209 // Not supported yet: symv
210 // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
211 // VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>());
212 // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Lower>());
213 // VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
214
215 // Not supported yet: symm
216 // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
217 // VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>());
218 // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
219 // VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>());
220
221 rcd.setZero();
222 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md),
223 Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
224 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd),
225 Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
226 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md),
227 Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>()));
228 VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd),
229 Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>()));
230
231
232 VERIFY_IS_APPROX( md.array() * mcd.array(), md.template cast<CD>().eval().array() * mcd.array() );
233 VERIFY_IS_APPROX( mcd.array() * md.array(), mcd.array() * md.template cast<CD>().eval().array() );
234
235 VERIFY_IS_APPROX( md.array() + mcd.array(), md.template cast<CD>().eval().array() + mcd.array() );
236 VERIFY_IS_APPROX( mcd.array() + md.array(), mcd.array() + md.template cast<CD>().eval().array() );
237
238 VERIFY_IS_APPROX( md.array() - mcd.array(), md.template cast<CD>().eval().array() - mcd.array() );
239 VERIFY_IS_APPROX( mcd.array() - md.array(), mcd.array() - md.template cast<CD>().eval().array() );
240
241 if(mcd.array().abs().minCoeff()>epsd)
242 {
243 VERIFY_IS_APPROX( md.array() / mcd.array(), md.template cast<CD>().eval().array() / mcd.array() );
244 }
245 if(md.array().abs().minCoeff()>epsd)
246 {
247 VERIFY_IS_APPROX( mcd.array() / md.array(), mcd.array() / md.template cast<CD>().eval().array() );
248 }
249
250 if(md.array().abs().minCoeff()>epsd || mcd.array().abs().minCoeff()>epsd)
251 {
252 VERIFY_IS_APPROX( md.array().pow(mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
253 VERIFY_IS_APPROX( mcd.array().pow(md.array()), mcd.array().pow(md.template cast<CD>().eval().array()) );
254
255 VERIFY_IS_APPROX( pow(md.array(),mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) );
256 VERIFY_IS_APPROX( pow(mcd.array(),md.array()), mcd.array().pow(md.template cast<CD>().eval().array()) );
257 }
258
259 rcd = mcd;
260 VERIFY_IS_APPROX( rcd = md, md.template cast<CD>().eval() );
261 rcd = mcd;
262 VERIFY_IS_APPROX( rcd += md, mcd + md.template cast<CD>().eval() );
263 rcd = mcd;
264 VERIFY_IS_APPROX( rcd -= md, mcd - md.template cast<CD>().eval() );
265 rcd = mcd;
266 VERIFY_IS_APPROX( rcd.array() *= md.array(), mcd.array() * md.template cast<CD>().eval().array() );
267 rcd = mcd;
268 if(md.array().abs().minCoeff()>epsd)
269 {
270 VERIFY_IS_APPROX( rcd.array() /= md.array(), mcd.array() / md.template cast<CD>().eval().array() );
271 }
272
273 rcd = mcd;
274 VERIFY_IS_APPROX( rcd.noalias() += md + mcd*md, mcd + (md.template cast<CD>().eval()) + mcd*(md.template cast<CD>().eval()));
275
276 VERIFY_IS_APPROX( rcd.noalias() = md*md, ((md*md).eval().template cast<CD>()) );
277 rcd = mcd;
278 VERIFY_IS_APPROX( rcd.noalias() += md*md, mcd + ((md*md).eval().template cast<CD>()) );
279 rcd = mcd;
280 VERIFY_IS_APPROX( rcd.noalias() -= md*md, mcd - ((md*md).eval().template cast<CD>()) );
281
282 VERIFY_IS_APPROX( rcd.noalias() = mcd + md*md, mcd + ((md*md).eval().template cast<CD>()) );
283 rcd = mcd;
284 VERIFY_IS_APPROX( rcd.noalias() += mcd + md*md, mcd + mcd + ((md*md).eval().template cast<CD>()) );
285 rcd = mcd;
286 VERIFY_IS_APPROX( rcd.noalias() -= mcd + md*md, - ((md*md).eval().template cast<CD>()) );
287 }
288
test_mixingtypes()289 void test_mixingtypes()
290 {
291 for(int i = 0; i < g_repeat; i++) {
292 CALL_SUBTEST_1(mixingtypes<3>());
293 CALL_SUBTEST_2(mixingtypes<4>());
294 CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
295
296 CALL_SUBTEST_4(mixingtypes<3>());
297 CALL_SUBTEST_5(mixingtypes<4>());
298 CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)));
299 }
300 }
301