• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
12 #include <unsupported/Eigen/EulerAngles>
13 
14 using namespace Eigen;
15 
16 template<typename EulerSystem, typename Scalar>
verify_euler_ranged(const Matrix<Scalar,3,1> & ea,bool positiveRangeAlpha,bool positiveRangeBeta,bool positiveRangeGamma)17 void verify_euler_ranged(const Matrix<Scalar,3,1>& ea,
18   bool positiveRangeAlpha, bool positiveRangeBeta, bool positiveRangeGamma)
19 {
20   typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
21   typedef Matrix<Scalar,3,3> Matrix3;
22   typedef Matrix<Scalar,3,1> Vector3;
23   typedef Quaternion<Scalar> QuaternionType;
24   typedef AngleAxis<Scalar> AngleAxisType;
25   using std::abs;
26 
27   Scalar alphaRangeStart, alphaRangeEnd;
28   Scalar betaRangeStart, betaRangeEnd;
29   Scalar gammaRangeStart, gammaRangeEnd;
30 
31   if (positiveRangeAlpha)
32   {
33     alphaRangeStart = Scalar(0);
34     alphaRangeEnd = Scalar(2 * EIGEN_PI);
35   }
36   else
37   {
38     alphaRangeStart = -Scalar(EIGEN_PI);
39     alphaRangeEnd = Scalar(EIGEN_PI);
40   }
41 
42   if (positiveRangeBeta)
43   {
44     betaRangeStart = Scalar(0);
45     betaRangeEnd = Scalar(2 * EIGEN_PI);
46   }
47   else
48   {
49     betaRangeStart = -Scalar(EIGEN_PI);
50     betaRangeEnd = Scalar(EIGEN_PI);
51   }
52 
53   if (positiveRangeGamma)
54   {
55     gammaRangeStart = Scalar(0);
56     gammaRangeEnd = Scalar(2 * EIGEN_PI);
57   }
58   else
59   {
60     gammaRangeStart = -Scalar(EIGEN_PI);
61     gammaRangeEnd = Scalar(EIGEN_PI);
62   }
63 
64   const int i = EulerSystem::AlphaAxisAbs - 1;
65   const int j = EulerSystem::BetaAxisAbs - 1;
66   const int k = EulerSystem::GammaAxisAbs - 1;
67 
68   const int iFactor = EulerSystem::IsAlphaOpposite ? -1 : 1;
69   const int jFactor = EulerSystem::IsBetaOpposite ? -1 : 1;
70   const int kFactor = EulerSystem::IsGammaOpposite ? -1 : 1;
71 
72   const Vector3 I = EulerAnglesType::AlphaAxisVector();
73   const Vector3 J = EulerAnglesType::BetaAxisVector();
74   const Vector3 K = EulerAnglesType::GammaAxisVector();
75 
76   EulerAnglesType e(ea[0], ea[1], ea[2]);
77 
78   Matrix3 m(e);
79   Vector3 eabis = EulerAnglesType(m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles();
80 
81   // Check that eabis in range
82   VERIFY(alphaRangeStart <= eabis[0] && eabis[0] <= alphaRangeEnd);
83   VERIFY(betaRangeStart <= eabis[1] && eabis[1] <= betaRangeEnd);
84   VERIFY(gammaRangeStart <= eabis[2] && eabis[2] <= gammaRangeEnd);
85 
86   Vector3 eabis2 = m.eulerAngles(i, j, k);
87 
88   // Invert the relevant axes
89   eabis2[0] *= iFactor;
90   eabis2[1] *= jFactor;
91   eabis2[2] *= kFactor;
92 
93   // Saturate the angles to the correct range
94   if (positiveRangeAlpha && (eabis2[0] < 0))
95     eabis2[0] += Scalar(2 * EIGEN_PI);
96   if (positiveRangeBeta && (eabis2[1] < 0))
97     eabis2[1] += Scalar(2 * EIGEN_PI);
98   if (positiveRangeGamma && (eabis2[2] < 0))
99     eabis2[2] += Scalar(2 * EIGEN_PI);
100 
101   VERIFY_IS_APPROX(eabis, eabis2);// Verify that our estimation is the same as m.eulerAngles() is
102 
103   Matrix3 mbis(AngleAxisType(eabis[0], I) * AngleAxisType(eabis[1], J) * AngleAxisType(eabis[2], K));
104   VERIFY_IS_APPROX(m,  mbis);
105 
106   // Tests that are only relevant for no possitive range
107   if (!(positiveRangeAlpha || positiveRangeBeta || positiveRangeGamma))
108   {
109     /* If I==K, and ea[1]==0, then there no unique solution. */
110     /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */
111     if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
112       VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
113 
114     // approx_or_less_than does not work for 0
115     VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
116   }
117 
118   // Quaternions
119   QuaternionType q(e);
120   eabis = EulerAnglesType(q, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles();
121   VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
122 }
123 
124 template<typename EulerSystem, typename Scalar>
verify_euler(const Matrix<Scalar,3,1> & ea)125 void verify_euler(const Matrix<Scalar,3,1>& ea)
126 {
127   verify_euler_ranged<EulerSystem>(ea, false, false, false);
128   verify_euler_ranged<EulerSystem>(ea, false, false, true);
129   verify_euler_ranged<EulerSystem>(ea, false, true, false);
130   verify_euler_ranged<EulerSystem>(ea, false, true, true);
131   verify_euler_ranged<EulerSystem>(ea, true, false, false);
132   verify_euler_ranged<EulerSystem>(ea, true, false, true);
133   verify_euler_ranged<EulerSystem>(ea, true, true, false);
134   verify_euler_ranged<EulerSystem>(ea, true, true, true);
135 }
136 
check_all_var(const Matrix<Scalar,3,1> & ea)137 template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
138 {
139   verify_euler<EulerSystemXYZ>(ea);
140   verify_euler<EulerSystemXYX>(ea);
141   verify_euler<EulerSystemXZY>(ea);
142   verify_euler<EulerSystemXZX>(ea);
143 
144   verify_euler<EulerSystemYZX>(ea);
145   verify_euler<EulerSystemYZY>(ea);
146   verify_euler<EulerSystemYXZ>(ea);
147   verify_euler<EulerSystemYXY>(ea);
148 
149   verify_euler<EulerSystemZXY>(ea);
150   verify_euler<EulerSystemZXZ>(ea);
151   verify_euler<EulerSystemZYX>(ea);
152   verify_euler<EulerSystemZYZ>(ea);
153 }
154 
eulerangles()155 template<typename Scalar> void eulerangles()
156 {
157   typedef Matrix<Scalar,3,3> Matrix3;
158   typedef Matrix<Scalar,3,1> Vector3;
159   typedef Array<Scalar,3,1> Array3;
160   typedef Quaternion<Scalar> Quaternionx;
161   typedef AngleAxis<Scalar> AngleAxisType;
162 
163   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
164   Quaternionx q1;
165   q1 = AngleAxisType(a, Vector3::Random().normalized());
166   Matrix3 m;
167   m = q1;
168 
169   Vector3 ea = m.eulerAngles(0,1,2);
170   check_all_var(ea);
171   ea = m.eulerAngles(0,1,0);
172   check_all_var(ea);
173 
174   // Check with purely random Quaternion:
175   q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
176   m = q1;
177   ea = m.eulerAngles(0,1,2);
178   check_all_var(ea);
179   ea = m.eulerAngles(0,1,0);
180   check_all_var(ea);
181 
182   // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
183   ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
184   check_all_var(ea);
185 
186   ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
187   check_all_var(ea);
188 
189   ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
190   check_all_var(ea);
191 
192   ea[1] = 0;
193   check_all_var(ea);
194 
195   ea.head(2).setZero();
196   check_all_var(ea);
197 
198   ea.setZero();
199   check_all_var(ea);
200 }
201 
test_EulerAngles()202 void test_EulerAngles()
203 {
204   for(int i = 0; i < g_repeat; i++) {
205     CALL_SUBTEST_1( eulerangles<float>() );
206     CALL_SUBTEST_2( eulerangles<double>() );
207   }
208 }
209