• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# -*- coding: utf-8 -*-
2"""Calculate the perimeter of a glyph."""
3
4from fontTools.pens.basePen import BasePen
5from fontTools.misc.bezierTools import approximateQuadraticArcLengthC, calcQuadraticArcLengthC, approximateCubicArcLengthC, calcCubicArcLengthC
6import math
7
8
9__all__ = ["PerimeterPen"]
10
11
12def _distance(p0, p1):
13	return math.hypot(p0[0] - p1[0], p0[1] - p1[1])
14
15class PerimeterPen(BasePen):
16
17	def __init__(self, glyphset=None, tolerance=0.005):
18		BasePen.__init__(self, glyphset)
19		self.value = 0
20		self.tolerance = tolerance
21
22		# Choose which algorithm to use for quadratic and for cubic.
23		# Quadrature is faster but has fixed error characteristic with no strong
24		# error bound.  The cutoff points are derived empirically.
25		self._addCubic = self._addCubicQuadrature if tolerance >= 0.0015 else self._addCubicRecursive
26		self._addQuadratic = self._addQuadraticQuadrature if tolerance >= 0.00075 else self._addQuadraticExact
27
28	def _moveTo(self, p0):
29		self.__startPoint = p0
30
31	def _closePath(self):
32		p0 = self._getCurrentPoint()
33		if p0 != self.__startPoint:
34			self._lineTo(self.__startPoint)
35
36	def _lineTo(self, p1):
37		p0 = self._getCurrentPoint()
38		self.value += _distance(p0, p1)
39
40	def _addQuadraticExact(self, c0, c1, c2):
41		self.value += calcQuadraticArcLengthC(c0, c1, c2)
42
43	def _addQuadraticQuadrature(self, c0, c1, c2):
44		self.value += approximateQuadraticArcLengthC(c0, c1, c2)
45
46	def _qCurveToOne(self, p1, p2):
47		p0 = self._getCurrentPoint()
48		self._addQuadratic(complex(*p0), complex(*p1), complex(*p2))
49
50	def _addCubicRecursive(self, c0, c1, c2, c3):
51		self.value += calcCubicArcLengthC(c0, c1, c2, c3, self.tolerance)
52
53	def _addCubicQuadrature(self, c0, c1, c2, c3):
54		self.value += approximateCubicArcLengthC(c0, c1, c2, c3)
55
56	def _curveToOne(self, p1, p2, p3):
57		p0 = self._getCurrentPoint()
58		self._addCubic(complex(*p0), complex(*p1), complex(*p2), complex(*p3))
59