• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2008 Google Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // This sample shows how to test common properties of multiple
32 // implementations of the same interface (aka interface tests).
33 
34 // The interface and its implementations are in this header.
35 #include "prime_tables.h"
36 
37 #include "gtest/gtest.h"
38 namespace {
39 // First, we define some factory functions for creating instances of
40 // the implementations.  You may be able to skip this step if all your
41 // implementations can be constructed the same way.
42 
43 template <class T>
44 PrimeTable* CreatePrimeTable();
45 
46 template <>
CreatePrimeTable()47 PrimeTable* CreatePrimeTable<OnTheFlyPrimeTable>() {
48   return new OnTheFlyPrimeTable;
49 }
50 
51 template <>
CreatePrimeTable()52 PrimeTable* CreatePrimeTable<PreCalculatedPrimeTable>() {
53   return new PreCalculatedPrimeTable(10000);
54 }
55 
56 // Then we define a test fixture class template.
57 template <class T>
58 class PrimeTableTest : public testing::Test {
59  protected:
60   // The ctor calls the factory function to create a prime table
61   // implemented by T.
PrimeTableTest()62   PrimeTableTest() : table_(CreatePrimeTable<T>()) {}
63 
~PrimeTableTest()64   ~PrimeTableTest() override { delete table_; }
65 
66   // Note that we test an implementation via the base interface
67   // instead of the actual implementation class.  This is important
68   // for keeping the tests close to the real world scenario, where the
69   // implementation is invoked via the base interface.  It avoids
70   // got-yas where the implementation class has a method that shadows
71   // a method with the same name (but slightly different argument
72   // types) in the base interface, for example.
73   PrimeTable* const table_;
74 };
75 
76 using testing::Types;
77 
78 // Google Test offers two ways for reusing tests for different types.
79 // The first is called "typed tests".  You should use it if you
80 // already know *all* the types you are gonna exercise when you write
81 // the tests.
82 
83 // To write a typed test case, first use
84 //
85 //   TYPED_TEST_SUITE(TestCaseName, TypeList);
86 //
87 // to declare it and specify the type parameters.  As with TEST_F,
88 // TestCaseName must match the test fixture name.
89 
90 // The list of types we want to test.
91 typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> Implementations;
92 
93 TYPED_TEST_SUITE(PrimeTableTest, Implementations);
94 
95 // Then use TYPED_TEST(TestCaseName, TestName) to define a typed test,
96 // similar to TEST_F.
TYPED_TEST(PrimeTableTest,ReturnsFalseForNonPrimes)97 TYPED_TEST(PrimeTableTest, ReturnsFalseForNonPrimes) {
98   // Inside the test body, you can refer to the type parameter by
99   // TypeParam, and refer to the fixture class by TestFixture.  We
100   // don't need them in this example.
101 
102   // Since we are in the template world, C++ requires explicitly
103   // writing 'this->' when referring to members of the fixture class.
104   // This is something you have to learn to live with.
105   EXPECT_FALSE(this->table_->IsPrime(-5));
106   EXPECT_FALSE(this->table_->IsPrime(0));
107   EXPECT_FALSE(this->table_->IsPrime(1));
108   EXPECT_FALSE(this->table_->IsPrime(4));
109   EXPECT_FALSE(this->table_->IsPrime(6));
110   EXPECT_FALSE(this->table_->IsPrime(100));
111 }
112 
TYPED_TEST(PrimeTableTest,ReturnsTrueForPrimes)113 TYPED_TEST(PrimeTableTest, ReturnsTrueForPrimes) {
114   EXPECT_TRUE(this->table_->IsPrime(2));
115   EXPECT_TRUE(this->table_->IsPrime(3));
116   EXPECT_TRUE(this->table_->IsPrime(5));
117   EXPECT_TRUE(this->table_->IsPrime(7));
118   EXPECT_TRUE(this->table_->IsPrime(11));
119   EXPECT_TRUE(this->table_->IsPrime(131));
120 }
121 
TYPED_TEST(PrimeTableTest,CanGetNextPrime)122 TYPED_TEST(PrimeTableTest, CanGetNextPrime) {
123   EXPECT_EQ(2, this->table_->GetNextPrime(0));
124   EXPECT_EQ(3, this->table_->GetNextPrime(2));
125   EXPECT_EQ(5, this->table_->GetNextPrime(3));
126   EXPECT_EQ(7, this->table_->GetNextPrime(5));
127   EXPECT_EQ(11, this->table_->GetNextPrime(7));
128   EXPECT_EQ(131, this->table_->GetNextPrime(128));
129 }
130 
131 // That's it!  Google Test will repeat each TYPED_TEST for each type
132 // in the type list specified in TYPED_TEST_SUITE.  Sit back and be
133 // happy that you don't have to define them multiple times.
134 
135 using testing::Types;
136 
137 // Sometimes, however, you don't yet know all the types that you want
138 // to test when you write the tests.  For example, if you are the
139 // author of an interface and expect other people to implement it, you
140 // might want to write a set of tests to make sure each implementation
141 // conforms to some basic requirements, but you don't know what
142 // implementations will be written in the future.
143 //
144 // How can you write the tests without committing to the type
145 // parameters?  That's what "type-parameterized tests" can do for you.
146 // It is a bit more involved than typed tests, but in return you get a
147 // test pattern that can be reused in many contexts, which is a big
148 // win.  Here's how you do it:
149 
150 // First, define a test fixture class template.  Here we just reuse
151 // the PrimeTableTest fixture defined earlier:
152 
153 template <class T>
154 class PrimeTableTest2 : public PrimeTableTest<T> {
155 };
156 
157 // Then, declare the test case.  The argument is the name of the test
158 // fixture, and also the name of the test case (as usual).  The _P
159 // suffix is for "parameterized" or "pattern".
160 TYPED_TEST_SUITE_P(PrimeTableTest2);
161 
162 // Next, use TYPED_TEST_P(TestCaseName, TestName) to define a test,
163 // similar to what you do with TEST_F.
TYPED_TEST_P(PrimeTableTest2,ReturnsFalseForNonPrimes)164 TYPED_TEST_P(PrimeTableTest2, ReturnsFalseForNonPrimes) {
165   EXPECT_FALSE(this->table_->IsPrime(-5));
166   EXPECT_FALSE(this->table_->IsPrime(0));
167   EXPECT_FALSE(this->table_->IsPrime(1));
168   EXPECT_FALSE(this->table_->IsPrime(4));
169   EXPECT_FALSE(this->table_->IsPrime(6));
170   EXPECT_FALSE(this->table_->IsPrime(100));
171 }
172 
TYPED_TEST_P(PrimeTableTest2,ReturnsTrueForPrimes)173 TYPED_TEST_P(PrimeTableTest2, ReturnsTrueForPrimes) {
174   EXPECT_TRUE(this->table_->IsPrime(2));
175   EXPECT_TRUE(this->table_->IsPrime(3));
176   EXPECT_TRUE(this->table_->IsPrime(5));
177   EXPECT_TRUE(this->table_->IsPrime(7));
178   EXPECT_TRUE(this->table_->IsPrime(11));
179   EXPECT_TRUE(this->table_->IsPrime(131));
180 }
181 
TYPED_TEST_P(PrimeTableTest2,CanGetNextPrime)182 TYPED_TEST_P(PrimeTableTest2, CanGetNextPrime) {
183   EXPECT_EQ(2, this->table_->GetNextPrime(0));
184   EXPECT_EQ(3, this->table_->GetNextPrime(2));
185   EXPECT_EQ(5, this->table_->GetNextPrime(3));
186   EXPECT_EQ(7, this->table_->GetNextPrime(5));
187   EXPECT_EQ(11, this->table_->GetNextPrime(7));
188   EXPECT_EQ(131, this->table_->GetNextPrime(128));
189 }
190 
191 // Type-parameterized tests involve one extra step: you have to
192 // enumerate the tests you defined:
193 REGISTER_TYPED_TEST_SUITE_P(
194     PrimeTableTest2,  // The first argument is the test case name.
195     // The rest of the arguments are the test names.
196     ReturnsFalseForNonPrimes, ReturnsTrueForPrimes, CanGetNextPrime);
197 
198 // At this point the test pattern is done.  However, you don't have
199 // any real test yet as you haven't said which types you want to run
200 // the tests with.
201 
202 // To turn the abstract test pattern into real tests, you instantiate
203 // it with a list of types.  Usually the test pattern will be defined
204 // in a .h file, and anyone can #include and instantiate it.  You can
205 // even instantiate it more than once in the same program.  To tell
206 // different instances apart, you give each of them a name, which will
207 // become part of the test case name and can be used in test filters.
208 
209 // The list of types we want to test.  Note that it doesn't have to be
210 // defined at the time we write the TYPED_TEST_P()s.
211 typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable>
212     PrimeTableImplementations;
213 INSTANTIATE_TYPED_TEST_SUITE_P(OnTheFlyAndPreCalculated,    // Instance name
214                                PrimeTableTest2,             // Test case name
215                                PrimeTableImplementations);  // Type list
216 
217 }  // namespace
218