• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Guava Authors
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.google.common.math;
18 
19 import static com.google.common.math.MathBenchmarking.ARRAY_MASK;
20 import static com.google.common.math.MathBenchmarking.ARRAY_SIZE;
21 import static com.google.common.math.MathBenchmarking.RANDOM_SOURCE;
22 import static java.math.RoundingMode.CEILING;
23 
24 import com.google.caliper.BeforeExperiment;
25 import com.google.caliper.Benchmark;
26 import com.google.caliper.Param;
27 import java.math.BigInteger;
28 
29 /**
30  * Benchmarks for the non-rounding methods of {@code BigIntegerMath}.
31  *
32  * @author Louis Wasserman
33  */
34 public class BigIntegerMathBenchmark {
35   private static final int[] factorials = new int[ARRAY_SIZE];
36   private static final int[] slowFactorials = new int[ARRAY_SIZE];
37   private static final int[] binomials = new int[ARRAY_SIZE];
38 
39   @Param({"50", "1000", "10000"})
40   int factorialBound;
41 
42   @BeforeExperiment
setUp()43   void setUp() {
44     for (int i = 0; i < ARRAY_SIZE; i++) {
45       factorials[i] = RANDOM_SOURCE.nextInt(factorialBound);
46       slowFactorials[i] = RANDOM_SOURCE.nextInt(factorialBound);
47       binomials[i] = RANDOM_SOURCE.nextInt(factorials[i] + 1);
48     }
49   }
50 
51   /** Previous version of BigIntegerMath.factorial, kept for timing purposes. */
oldSlowFactorial(int n)52   private static BigInteger oldSlowFactorial(int n) {
53     if (n <= 20) {
54       return BigInteger.valueOf(LongMath.factorial(n));
55     } else {
56       int k = 20;
57       return BigInteger.valueOf(LongMath.factorial(k)).multiply(oldSlowFactorial(k, n));
58     }
59   }
60 
61   /** Returns the product of {@code n1} exclusive through {@code n2} inclusive. */
oldSlowFactorial(int n1, int n2)62   private static BigInteger oldSlowFactorial(int n1, int n2) {
63     assert n1 <= n2;
64     if (IntMath.log2(n2, CEILING) * (n2 - n1) < Long.SIZE - 1) {
65       // the result will definitely fit into a long
66       long result = 1;
67       for (int i = n1 + 1; i <= n2; i++) {
68         result *= i;
69       }
70       return BigInteger.valueOf(result);
71     }
72 
73     /*
74      * We want each multiplication to have both sides with approximately the same number of digits.
75      * Currently, we just divide the range in half.
76      */
77     int mid = (n1 + n2) >>> 1;
78     return oldSlowFactorial(n1, mid).multiply(oldSlowFactorial(mid, n2));
79   }
80 
81   @Benchmark
slowFactorial(int reps)82   int slowFactorial(int reps) {
83     int tmp = 0;
84     for (int i = 0; i < reps; i++) {
85       int j = i & ARRAY_MASK;
86       tmp += oldSlowFactorial(slowFactorials[j]).intValue();
87     }
88     return tmp;
89   }
90 
91   @Benchmark
factorial(int reps)92   int factorial(int reps) {
93     int tmp = 0;
94     for (int i = 0; i < reps; i++) {
95       int j = i & ARRAY_MASK;
96       tmp += BigIntegerMath.factorial(factorials[j]).intValue();
97     }
98     return tmp;
99   }
100 
101   @Benchmark
binomial(int reps)102   int binomial(int reps) {
103     int tmp = 0;
104     for (int i = 0; i < reps; i++) {
105       int j = i & 0xffff;
106       tmp += BigIntegerMath.binomial(factorials[j], binomials[j]).intValue();
107     }
108     return tmp;
109   }
110 }
111